cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A024629 n written in fractional base 3/2.

Original entry on oeis.org

0, 1, 2, 20, 21, 22, 210, 211, 212, 2100, 2101, 2102, 2120, 2121, 2122, 21010, 21011, 21012, 21200, 21201, 21202, 21220, 21221, 21222, 210110, 210111, 210112, 212000, 212001, 212002, 212020, 212021, 212022, 212210, 212211, 212212, 2101100, 2101101
Offset: 0

Views

Author

Keywords

Comments

A246435(n) = (number of digits in a(n)) = A055642(a(n)). - Reinhard Zumkeller, Sep 05 2014
The number of positive even n such that a(n) has k+1 digits is A005428(k). - Glen Whitney, Jul 09 2017
The position of the rightmost "2" digit in a(3k), k >= 1, appears to be A087088(k). - Peter Munn, Jun 24 2020 [updated Peter Munn, Jul 14 2020 for new A087088 offset]

Examples

			Representations of the first few numbers are:
   0 =         0
   1 =         1
   2 =         2
   3 =       2 0
   4 =       2 1
   5 =       2 2
   6 =     2 1 0
   7 =     2 1 1
   8 =     2 1 2
   9 =   2 1 0 0
  10 =   2 1 0 1
  11 =   2 1 0 2
  12 =   2 1 2 0
  13 =   2 1 2 1
  14 =   2 1 2 2
  15 = 2 1 0 1 0
[extended and reformatted by _Peter Munn_, Jun 27 2020]
		

Crossrefs

Cf. A081848, A087088, A246435 (string lengths), A244040 (digit sums).

Programs

  • Haskell
    a024629 0 = 0
    a024629 n = 10 * a024629 (2 * n') + t where (n', t) = divMod n 3
    -- Reinhard Zumkeller, Sep 05 2014
  • Maple
    a:= proc(n) `if`(n<1, 0, irem(n, 3, 'q')+a(2*q)*10) end:
    seq(a(n), n=0..45);  # Alois P. Heinz, Jun 19 2018
  • Mathematica
    a[ n_] := If[ n < 1, 0, a[ Quotient[n, 3] 2] 10 + Mod[ n, 3]]; (* Michael Somos, Jun 18 2014 *)
  • PARI
    {a(n) = if( n<1, 0, a(n\3 * 2) * 10 + n%3)}; /* Michael Somos, Jun 18 2014 */
    
  • SageMath
    def basepqExpansion(p,q,n):
        L, i = [n], 1
        while L[i-1] >= p:
            x=L[i-1]
            L[i-1]=x.mod(p)
            L.append(q*(x//p))
            i+=1
        L.reverse()
        return Integer(''.join(str(x) for x in L))
    [basepqExpansion(3,2,n) for n in [0..40]] # Tom Edgar, Hailey R. Olafson, and James Van Alstine, Jun 17 2014; modified and corrected by G. C. Greubel, Aug 20 2019
    

Formula

To represent a number in base b, if a digit is >= b, subtract b and carry 1. In fractional base a/b, subtract a and carry b.
a(0)=0, a(3n+r) = 10*a(2n)+r for n >= 0 and r = 0, 1, 2. - Jianing Song, Oct 15 2022

Extensions

Tanton link corrected by Charles R Greathouse IV, Oct 20 2008