A024629 n written in fractional base 3/2.
0, 1, 2, 20, 21, 22, 210, 211, 212, 2100, 2101, 2102, 2120, 2121, 2122, 21010, 21011, 21012, 21200, 21201, 21202, 21220, 21221, 21222, 210110, 210111, 210112, 212000, 212001, 212002, 212020, 212021, 212022, 212210, 212211, 212212, 2101100, 2101101
Offset: 0
Examples
Representations of the first few numbers are: 0 = 0 1 = 1 2 = 2 3 = 2 0 4 = 2 1 5 = 2 2 6 = 2 1 0 7 = 2 1 1 8 = 2 1 2 9 = 2 1 0 0 10 = 2 1 0 1 11 = 2 1 0 2 12 = 2 1 2 0 13 = 2 1 2 1 14 = 2 1 2 2 15 = 2 1 0 1 0 [extended and reformatted by _Peter Munn_, Jun 27 2020]
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
- Matvey Borodin, Hannah Han, Kaylee Ji, Tanya Khovanova, Alexander Peng, David Sun, Isabel Tu, Jason Yang, William Yang, Kevin Zhang, and Kevin Zhao, Variants of Base 3 over 2, arXiv:1901.09818 [math.NT], 2019.
- B. Chen, R. Chen, J. Guo, S. Lee et al, On Base 3/2 and its sequences, arXiv:1808.04304 [math.NT], 2018.
- Michel Dekking, The Thue-Morse sequence in base 3/2, arXiv:2301.13563 [math.CO], 2023. See also J. Int. Seq., Vol. 26 (2023), Article 23.2.3.
- Tanya Khovanova and Kevin Wu, Base 3/2 and Greedily Partitioned Sequences, arXiv:2007.09705 [math.NT], 2020.
- J. S. Tanton, A collection of research problems. [archived version]
Programs
-
Haskell
a024629 0 = 0 a024629 n = 10 * a024629 (2 * n') + t where (n', t) = divMod n 3 -- Reinhard Zumkeller, Sep 05 2014
-
Maple
a:= proc(n) `if`(n<1, 0, irem(n, 3, 'q')+a(2*q)*10) end: seq(a(n), n=0..45); # Alois P. Heinz, Jun 19 2018
-
Mathematica
a[ n_] := If[ n < 1, 0, a[ Quotient[n, 3] 2] 10 + Mod[ n, 3]]; (* Michael Somos, Jun 18 2014 *)
-
PARI
{a(n) = if( n<1, 0, a(n\3 * 2) * 10 + n%3)}; /* Michael Somos, Jun 18 2014 */
-
SageMath
def basepqExpansion(p,q,n): L, i = [n], 1 while L[i-1] >= p: x=L[i-1] L[i-1]=x.mod(p) L.append(q*(x//p)) i+=1 L.reverse() return Integer(''.join(str(x) for x in L)) [basepqExpansion(3,2,n) for n in [0..40]] # Tom Edgar, Hailey R. Olafson, and James Van Alstine, Jun 17 2014; modified and corrected by G. C. Greubel, Aug 20 2019
Formula
To represent a number in base b, if a digit is >= b, subtract b and carry 1. In fractional base a/b, subtract a and carry b.
a(0)=0, a(3n+r) = 10*a(2n)+r for n >= 0 and r = 0, 1, 2. - Jianing Song, Oct 15 2022
Extensions
Tanton link corrected by Charles R Greathouse IV, Oct 20 2008
Comments