cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 33 results. Next

A081848 Number of numbers whose base-3/2 expansion (see A024629) has n digits.

Original entry on oeis.org

3, 3, 3, 6, 9, 12, 18, 27, 42, 63, 93, 141, 210, 315, 474, 711, 1065, 1599, 2397, 3597, 5394, 8091, 12138, 18207, 27309, 40965, 61446, 92169, 138255, 207381, 311073, 466608, 699912, 1049868, 1574802, 2362203, 3543306, 5314959, 7972437, 11958657
Offset: 1

Views

Author

N. J. A. Sloane, Apr 13 2003

Keywords

Comments

Run lengths in A246435. - Reinhard Zumkeller, Sep 05 2014

Examples

			a(1) = 3 because 0, 1 and 2 each have 1 digit.
		

Crossrefs

Programs

  • Haskell
    a081848 n = a081848_list !! (n-1)
    a081848_list = 3 : tail (zipWith (-) (tail a070885_list) a070885_list)
    -- Reinhard Zumkeller, Sep 05 2014
    
  • Python
    from itertools import islice
    def A081848_gen(): # generator of terms
        yield (a:=3)
        while True:
            yield (b:=(a+1>>1)+(a&1))
            a += b
    A081848_list = list(islice(A081848_gen(),70)) # Chai Wah Wu, Sep 20 2022

Formula

For n > 1, a(n) = A070885(n+1) - A070885(n). - Tom Edgar, Jun 25 2014
a(n) = 3*A073941(n). - Tom Edgar, Jul 21 2014

Extensions

More terms from David Wasserman, Jun 28 2004
Edited by Charles R Greathouse IV, Aug 02 2010

A304273 The concatenation of the first n terms is the smallest positive even number with n digits when written in base 3/2 (cf. A024629).

Original entry on oeis.org

2, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0
Offset: 1

Views

Author

Tanya Khovanova and PRIMES STEP Senior group, May 09 2018

Keywords

Comments

This sequence exists since the smallest even integers (see A303500) are prefixes of each other.
Apparently a variant of A205083. - R. J. Mathar, Jun 09 2018

Examples

			The number 5 in base 3/2 is 22, and the number 6 is 210. Therefore 210 is the smallest even integer with 3 digits in base 3/2. Its prefix 21 is 4: the smallest even integer with 2 digits in base 3/2.
		

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n<2, 2*n,
          (t-> t+irem(t, 2))(b(n-1)*3/2))
        end:
    a:= n-> b(n)-3/2*b(n-1):
    seq(a(n), n=1..105);  # Alois P. Heinz, Jun 21 2018
  • Mathematica
    b[n_] := b[n] = If[n < 2, 2*n, Function[t, t + Mod[t, 2]][3/2 b[n - 1]]]; a[n_] := b[n] - 3/2 b[n - 1]; Table[a[n], {n, 1, 105}] (* Robert P. P. McKone, Feb 12 2021 *)

Formula

For n>1, a(n) = A304274(n-1) - 1.

Extensions

More terms from Alois P. Heinz, Jun 21 2018

A005428 a(n) = ceiling((1 + sum of preceding terms) / 2) starting with a(0) = 1.

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 9, 14, 21, 31, 47, 70, 105, 158, 237, 355, 533, 799, 1199, 1798, 2697, 4046, 6069, 9103, 13655, 20482, 30723, 46085, 69127, 103691, 155536, 233304, 349956, 524934, 787401, 1181102, 1771653, 2657479, 3986219, 5979328, 8968992, 13453488, 20180232, 30270348, 45405522, 68108283, 102162425, 153243637, 229865456, 344798184
Offset: 0

Views

Author

Keywords

Comments

Original definition: a(0) = 1, state(0) = 2; for n >= 1, if a(n-1) is even then a(n) = 3*a(n-1)/2 and state(n) = state(n-1); if a(n-1) is odd and state(n-1) = 1 then a(n) = ceiling( 3*a(n-1)/2) and state(n) = 3 - state(n-1) and if a(n-1) is odd and state(n-1) = 2 then a(n) = floor( 3*a(n-1)/2) and state(n) = 3 - state(n-1). [See formula by M. Alekseyev for a simpler equivalent. - Ed.]
Arises from a version of the Josephus problem: sequence gives set of n where, if you start with n people and every 3rd person drops out, either it is person #1 or #2 who is left at the end. A081614 and A081615 give the subsequences where it is person #1 (respectively #2) who is left.
The state changes just when a(n) is odd: it therefore indicates whether the sum of a(0) to a(n) is odd (1 means no, 2 means yes).
The sum a(0) to a(n) is never divisible by 3 (for n >= 0); it is 1 mod 3 precisely when the sum a(0) to a(n-1) is odd and thus indicates the state at the previous step. - Franklin T. Adams-Watters, May 14 2008
The number of nodes at level n of a planted binary tree with alternating branching and non-branching nodes. - Joseph P. Shoulak, Aug 26 2012
Take Sum_{k=1..n} a(k) objects, and partition them into 3 parts. It is always possible to generate those parts using addends once each from the initial n terms, and this is the fastest growing sequence with this property. For example, taking 1+1+2+3+4+6+9 = 26 objects, if we partition them [10,9,7], we can generate these sizes as 10 = 9+1, 9 = 6+3, 7 = 4+2+1. The corresponding sequence partitioning into 2 parts is the powers of 2, A000079. In general, to handle partitioning into k parts, replace the division by 2 in the definition with division by k-1. - Franklin T. Adams-Watters, Nov 07 2015
a(n) is the number of even integers that have n+1 digits when written in base 3/2. For example, there are 2 even integers that use three digits in base 3/2: 6 and 8: they are written as 210 and 212, respectively. - Tanya Khovanova and PRIMES STEP Senior group, Jun 03 2018

Examples

			n........0...1...2...3...4...5...6...7...8...9..10..11..12..13..14.
state=1......1...........4...6...9..........31.....70..105.........
state=2..1.......2...3..............14..21......47.........158..237
		

References

  • F. Schuh, The Master Book of Mathematical Recreations. Dover, NY, 1968, page, 374, Table 18, union of columns 1 and 2 (which are A081614 and A081615).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A005427, A073941, A082416. Union of A081614 and A081615.
First differences of D_3(n) (A061419) in the terminology of Odlyzko and Wilf. - Ralf Stephan, Apr 23 2002
Same as log_2(A082125(n+3)). - Ralf Stephan, Apr 16 2002
Apart from initial terms, same as A073941, which has further information.
a(n) is the number of positive even k for which A024629(k) has n+1 digits. - Glen Whitney, Jul 09 2017
Partial sums are in A061419, A061418, A006999.

Programs

  • Haskell
    a005428 n = a005428_list !! n
    a005428_list = (iterate j (1, 1)) where
       j (a, s) = (a', (s + a') `mod` 2) where
         a' = (3 * a + (1 - s) * a `mod` 2) `div` 2
    -- Reinhard Zumkeller, May 10 2015 (fixed), Oct 26 2011
    
  • Mathematica
    f[s_] := Append[s, Ceiling[(1 + Plus @@ s)/2]]; Nest[f, {1}, 40] (* Robert G. Wilson v, Jul 07 2006 *)
    nxt[{t_,a_}]:=Module[{c=Ceiling[(1+t)/2]},{t+c,c}]; NestList[nxt,{1,1},50][[All,2]] (* Harvey P. Dale, Nov 05 2017 *)
  • PARI
    { a=1; s=2; for(k=1,50, print1(a,", "); a=(3*a+s-1)\2; s=(s+a)%3; ) } \\ Max Alekseyev, Mar 28 2009
    
  • PARI
    s=0;vector(50,n,-s+s+=s\2+1)  \\ M. F. Hasler, Oct 14 2012
    
  • Python
    from itertools import islice
    def A005428_gen(): # generator of terms
        a, c = 1, 0
        yield 1
        while True:
            yield (a:=1+((c:=c+a)>>1))
    A005428_list = list(islice(A005428_gen(),30)) # Chai Wah Wu, Sep 21 2022

Formula

a(0) = 1; a(n) = ceiling((1 + Sum_{k=0..n-1} a(k)) / 2). - Don Reble, Apr 23 2003
a(1) = 1, s(1) = 2, and for n > 1, a(n) = floor((3*a(n-1) + s(n-1) - 1) / 2), s(n) = (s(n-1) + a(n)) mod 3. - Max Alekseyev, Mar 28 2009
a(n) = floor(1 + (sum of preceding terms)/2). - M. F. Hasler, Oct 14 2012

Extensions

More terms from Hans Havermann, Apr 23 2003
Definition replaced with a simpler formula due to Don Reble, by M. F. Hasler, Oct 14 2012

A244040 Sum of digits of n in fractional base 3/2.

Original entry on oeis.org

0, 1, 2, 2, 3, 4, 3, 4, 5, 3, 4, 5, 5, 6, 7, 4, 5, 6, 5, 6, 7, 7, 8, 9, 5, 6, 7, 5, 6, 7, 7, 8, 9, 8, 9, 10, 5, 6, 7, 7, 8, 9, 6, 7, 8, 7, 8, 9, 9, 10, 11, 9, 10, 11, 5, 6, 7, 7, 8, 9, 8, 9, 10, 6, 7, 8, 8, 9, 10, 8, 9, 10, 9, 10, 11, 11, 12, 13, 10, 11, 12, 5
Offset: 0

Views

Author

James Van Alstine, Jun 17 2014

Keywords

Comments

The base 3/2 expansion is unique, and thus the sum of digits function is well-defined.
Fixed point starting with 0 of the two-block substitution a,b -> a,a+1,a+2 for a = 0,1,2,... and b = 0,1,2,.... - Michel Dekking, Sep 29 2022

Examples

			In base 3/2 the number 7 is represented by 211 and so a(7) = 2 + 1 + 1 = 4.
		

Crossrefs

Programs

  • Haskell
    a244040 0 = 0
    a244040 n = a244040 (2 * n') + t where (n', t) = divMod n 3
    -- Reinhard Zumkeller, Sep 05 2014
    
  • Mathematica
    a[n_]:= a[n]= If[n==0, 0, a[2*Floor[n/3]] + Mod[n,3]]; Table[a[n], {n, 0, 85}] (* G. C. Greubel, Aug 20 2019 *)
  • PARI
    a(n) = if(n == 0, 0, a(n\3 * 2) + n % 3); \\ Amiram Eldar, Jul 30 2025
  • Python
    a244040 = lambda n: a244040((n // 3) * 2) + (n % 3) if n else 0 # David Radcliffe, Aug 21 2021
    
  • Sage
    def base32sum(n):
        L, i = [n], 1
        while L[i-1]>2:
            x=L[i-1]
            L[i-1]=x.mod(3)
            L.append(2*floor(x/3))
            i+=1
        return sum(L)
    [base32sum(n) for n in [0..85]]
    

Formula

a(0) = 0, a(3n+r) = a(2n)+r for n >= 0 and r = 0, 1, 2. - David Radcliffe, Aug 21 2021
a(n) = A007953(A024629(n)). - Amiram Eldar, Jul 30 2025

A342426 Niven numbers in base 3/2: numbers divisible by their sum of digits in fractional base 3/2 (A244040).

Original entry on oeis.org

1, 2, 6, 9, 14, 21, 40, 42, 56, 72, 84, 108, 110, 120, 126, 130, 143, 154, 156, 162, 165, 168, 169, 176, 180, 182, 189, 198, 220, 225, 231, 243, 252, 280, 288, 297, 306, 308, 320, 322, 330, 336, 348, 350, 364, 390, 423, 430, 432, 459, 460, 462, 480, 490, 504
Offset: 1

Views

Author

Amiram Eldar, Mar 11 2021

Keywords

Examples

			6 is a term since its representation in base 3/2 is 210 and 2 + 1 + 0 = 3 is a divisor of 6.
9 is a term since its representation in base 3/2 is 2100 and 2 + 1 + 0 + 0 = 3 is a divisor of 9.
		

Crossrefs

Subsequences: A342427, A342428, A342429.
Similar sequences: A005349 (decimal), A049445 (binary), A064150 (ternary), A064438 (quaternary), A064481 (base 5), A118363 (factorial), A328208 (Zeckendorf), A328212 (lazy Fibonacci), A331085 (negaFibonacci), A333426 (primorial), A334308 (base phi), A331728 (negabinary).

Programs

  • Mathematica
    s[0] = 0; s[n_] := s[n] = s[2*Floor[n/3]] + Mod[n, 3]; q[n_] := Divisible[n, s[n]]; Select[Range[500], q]

A246435 Length of representation of n in fractional base 3/2.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9
Offset: 0

Views

Author

Reinhard Zumkeller, Sep 05 2014

Keywords

Crossrefs

Cf. A024629, A055642, A070989, A081604, A081848 (run lengths), A244040.

Programs

  • Haskell
    a246435 n = if n < 3 then 1 else a246435 (2 * div n 3) + 1
    -- Reinhard Zumkeller, Sep 05 2014
    
  • Mathematica
    a[n_] := If[n < 3, 1, a[2 Quotient[n, 3]] + 1]; Array[a, 100, 0] (* Jean-François Alcover, Feb 05 2019 *)
  • PARI
    a(n) = if(n < 3, 1, a(n\3 * 2) + 1); \\ Amiram Eldar, Jul 30 2025

Formula

a(n) = if n < 3 then 1, otherwise a(2*floor(n/3)) + 1.
a(n) = A055642(A024629(n)).

A070885 a(n) = (3/2)*a(n-1) if a(n-1) is even; (3/2)*(a(n-1)+1) if a(n-1) is odd.

Original entry on oeis.org

1, 3, 6, 9, 15, 24, 36, 54, 81, 123, 186, 279, 420, 630, 945, 1419, 2130, 3195, 4794, 7191, 10788, 16182, 24273, 36411, 54618, 81927, 122892, 184338, 276507, 414762, 622143, 933216, 1399824, 2099736, 3149604, 4724406, 7086609, 10629915
Offset: 1

Views

Author

Eric W. Weisstein, May 14 2002

Keywords

Comments

The smallest positive number such that A024629(a(n)) has n digits, per page 9 of the Tanton reference in Links. - Glen Whitney, Sep 17 2017

References

  • Wolfram, S. A New Kind of Science. Champaign, IL: Wolfram Media, 2002, p. 123.

Crossrefs

The constant K is 2/3*K(3) (see A083286). - Ralf Stephan, May 29 2003
Cf. A003312.
Cf. A081848.
Cf. A205083 (parity of terms).

Programs

  • Haskell
    a070885 n = a070885_list !! (n-1)
    a070885_list = 1 : map (flip (*) 3 . flip div 2 . (+ 1)) a070885_list
    -- Reinhard Zumkeller, Sep 05 2014
    
  • Maple
    A070885 := proc(n)
        option remember;
        if n = 1 then
            return 1;
        elif type(procname(n-1),'even') then
            procname(n-1) ;
        else
            procname(n-1)+1 ;
        end if;
        %*3/2 ;
    end proc:
    seq(A070885(n),n=1..80) ; # R. J. Mathar, Jun 18 2018
  • Mathematica
    NestList[If[EvenQ[#],3/2 #,3/2 (#+1)]&,1,40] (* Harvey P. Dale, May 18 2018 *)
  • Python
    from itertools import islice
    def A070885_gen(): # generator of terms
        a = 1
        while True:
            yield a
            a += (a+1>>1)+(a&1)
    A070885_list = list(islice(A070885_gen(),70)) # Chai Wah Wu, Sep 20 2022

Formula

For n > 1, a(n) = 3*A061419(n) = 3*floor(K*(3/2)^n) where K=1.08151366859... - Benoit Cloitre, Aug 18 2002
a(n) = 3*ceiling(a(n-1)/2). - Benoit Cloitre, Apr 25 2003
a(n+1) = a(n) + A081848(n), for n > 1. - Reinhard Zumkeller, Sep 05 2014

A087088 Positive ruler-type fractal sequence with 1's in every third position.

Original entry on oeis.org

1, 2, 3, 1, 4, 2, 1, 5, 3, 1, 2, 6, 1, 4, 2, 1, 3, 7, 1, 2, 5, 1, 3, 2, 1, 4, 8, 1, 2, 3, 1, 6, 2, 1, 4, 3, 1, 2, 5, 1, 9, 2, 1, 3, 4, 1, 2, 7, 1, 3, 2, 1, 5, 4, 1, 2, 3, 1, 6, 2, 1, 10, 3, 1, 2, 4, 1, 5, 2, 1, 3, 8, 1, 2, 4, 1, 3, 2, 1, 6, 5, 1, 2, 3, 1, 4, 2, 1, 7, 3, 1, 2, 11, 1, 4, 2, 1, 3, 5, 1, 2, 6, 1, 3, 2
Offset: 1

Views

Author

Enrico T. Federighi (rico125162(AT)aol.com), Aug 08 2003

Keywords

Comments

If all the terms in the sequence are reduced by one and then all zeros are removed, the result is the same as the original sequence.
From Benoit Cloitre, Mar 07 2009: (Start)
To construct the sequence:
Step 1: start from a sequence of 1's and leave two undefined places between every pair of 1's giving: 1,(),(),1,(),(),1,(),(),1,(),(),1,(),(),1,...
Step 2: replace the first undefined place with a 2 and henceforth leave two undefined places between two 2's giving: 1,2,(),1,(),2,1,(),(),1,2,(),1,(),2,1,...
Step 3: replace the first undefined place with a 3 and henceforth leave two undefined places between two 3's giving: 1,2,3,1,(),2,1,(),3,1,2,(),1,(),2,1,...
Step 4: replace the first undefined place with a 4 and leave 2 undefined places between two 4's giving: 1,2,3,1,4,2,1,(),3,1,2,(),1,4,2,1,... Iterating the process indefinitely yields the sequence: 1,2,3,1,4,2,1,5,3,1,2,6,1,4,2,1,... (End)
From Peter Munn, Jul 10 2020: (Start)
For k >= 1, the number k occurs in a pattern with fundamental period 3^k, and with points of mirror symmetry at intervals of (3^k)/2. Those points have an extrapolated common origin (for k >= 1) at an offset 1.5 to the left of the sequence's initial "1". The snake format illustration in the example section may be useful for visualizing this.
(End)
For k >= 1, k first occurs at position A061419(k) and its k-th occurrence is at position A083045(k-1). - Peter Munn, Aug 23 2020
(a(n)) is the unique fixed point of the two-block substitution a,b -> 1,a+1,b+1, where a,b are natural numbers. - Michel Dekking, Sep 26 2022

Examples

			From _Peter Munn_, Jul 03 2020: (Start)
Listing the terms in a snake format (with period 27) illustrates periodic and mirror symmetries. Horizontal lines mark points of mirror symmetry for 3's. Vertical lines mark further points of mirror symmetry for 2's. 79 terms are shown. (Referred to the extrapolated common origin of periodic mirror symmetry, the initial term is at offset 1.5 and the last shown is at offset 79.5 = 3^4 - 1.5.) Observe also mirror symmetry of 4's (seen vertically).
    1  2  3  1  4  2  1  5   3  1  2  6
             |             |            1 --
    1  2  3  1  5  2  1  7   3  1  2  4
_ 4
  8
    1  2  3  1  6  2  1  4   3  1  2  5
             |             |            1 --
    1  2  3  1  7  2  1  4   3  1  2  9
_ 5
  4
    1  2  3  1  6  2  1 10   3  1  2  4
             |             |            1 --
    1  2  3  1  4  2  1  8   3  1  2  5
(End)
From _Peter Munn_, Aug 22 2020: (Start)
The start of the sequence is shown below in conjunction with related sequences, aligning their points of mirror symmetry. The longer, and shorter, vertical lines indicate points of mirror symmetry for terms valued less than 4, and less than 3, respectively. Note each term of A051064 is the minimum of two terms displayed nearest below it, and each term of A254046 is the minimum of the two terms displayed diagonally above it.
        |                          |                          |
A051064:| 1 1 2 1 1 2 1 1 3 1 1 2 1 1 2 1 1 3 1 1 2 1 1 2 1 1 4 1 1 2
        |        |        |        |        |        |        |
[a(n)]: |  1 2 3 1 4 2 1 5 3 1 2 6 1 4 2 1 3 7 1 2 5 1 3 2 1 4 8 1 2 3
        |        |        |        |        |        |        |
A254046:|1 2 1 1 3 1 1 2 1 1 2 1 1 4 1 1 2 1 1 2 1 1 3 1 1 2 1 1 2 1 1
        |                          |                          |
(End)
		

Crossrefs

Sequences with equivalent symmetries: A051064, A254046.
Records are given by A061419: a(A061419(n))=n.
Essentially the odd bisection of A335933.
Sequence with similar definition: A087165.
Ordinal transform of A163491, with which this sequence has a joint relationship to A083044, A083045.
See also the comment in A024629.

Programs

Formula

a(n) = 1 when n == 1 (mod 3), otherwise a(n) = a(n-ceiling(n/3)) + 1.
a(n) = 3 + A244040(3*(n-1)) - A244040(3*n). - Tom Edgar and James Van Alstine, Aug 04 2014
From Peter Munn, Aug 22 2020: (Start)
For m >= 0, a(3*m+1) = 1; a(3*m+2) = a(2*m+1) + 1; a(3*m+3) = a(2*m+2) + 1.
For n >= 1, the following identities hold.
a(n) = A335933(2*n+1).
A083044(A163491(n) - 1, a(n) - 1) = n.
A051064(n+1) = min(a(n), a(n+1)).
A254046(n+2) = min(a(n), a(n+2)). (End)

Extensions

More terms from Paul D. Hanna, Aug 21 2003
Offset changed by M. F. Hasler (following remarks by Peter Munn), Jul 13 2020
Thanks to Allan C. Wechsler for suggesting the new name. - N. J. A. Sloane, Jul 14 2020

A024631 n written in fractional base 4/3.

Original entry on oeis.org

0, 1, 2, 3, 30, 31, 32, 33, 320, 321, 322, 323, 3210, 3211, 3212, 3213, 32100, 32101, 32102, 32103, 32130, 32131, 32132, 32133, 321020, 321021, 321022, 321023, 321310, 321311, 321312, 321313, 3210200, 3210201, 3210202, 3210203, 3210230, 3210231
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A244041 (sum of digits).
Cf. A024629 (base 3/2).

Programs

  • Maple
    a:= proc(n) `if`(n<1, 0, irem(n, 4, 'q')+a(3*q)*10) end:
    seq(a(n), n=0..45);  # Alois P. Heinz, Aug 20 2019
  • Mathematica
    p:= 4; q:= 3; a[n_]:= a[n]= If[n==0, 0, 10*a[q*Floor[n/p]] + Mod[n, p]]; Table[a[n], {n,0,40}] (* G. C. Greubel, Aug 20 2019 *)
  • PARI
    a(n) = my(p=4, q=3); if(n==0,0, 10*a(q*(n\p)) + (n%p));
    vector(40, n, n--; a(n)) \\ G. C. Greubel, Aug 20 2019
    
  • Sage
    def basepqExpansion(p, q, n):
        L, i = [n], 1
        while L[i-1] >= p:
            x=L[i-1]
            L[i-1]=x.mod(p)
            L.append(q*(x//p))
            i+=1
        return Integer(''.join(str(x) for x in reversed(L)))
    [basepqExpansion(4,3,n) for n in [0..40]] # G. C. Greubel, Aug 20 2019

Formula

To represent a number in base b, if a digit is greater than or equal to b, subtract b and carry 1. In fractional base a/b, subtract a and carry b.

A303500 The smallest positive even integer that can be written with n digits in base 3/2.

Original entry on oeis.org

2, 21, 210, 2101, 21011, 210110, 2101100, 21011000, 210110001, 2101100011, 21011000110, 210110001101, 2101100011010, 21011000110100, 210110001101001, 2101100011010011, 21011000110100110, 210110001101001101
Offset: 0

Views

Author

Tanya Khovanova and PRIMES STEP Senior group, May 09 2018

Keywords

Comments

a(n) is a prefix of a(n+1).
The smallest, not necessarily even, integer in base 3/2 with n digits is a(n-1) with 0 added at the end.

Examples

			The number 5 in base 3/2 is 22, and the number 6 is 210. Therefore, 210 is the smallest even integer with 3 digits in base 3/2.
		

Crossrefs

See A024629 for the base-3/2 expansion of n.

Programs

  • Maple
    roll32 := proc(L)
        local piv,L1 ;
        piv := 1;
        L1 := subsop(piv=op(piv,L)+1,L) ;
        while op(piv,L1) >= 3 do
            L1 := [seq(0,i=1..piv), op(piv+1,L1)+1, seq(op(i,L1),i=piv+2..nops(L1))] ;
            piv := piv+1 ;
        end do:
        L1 ;
    end proc:
    from32 := proc(L)
        add( op(i,L)*(3/2)^(i-1),i=1..nops(L)) ;
    end proc:
    A303500 := proc(n)
        local dgs ;
        dgs := [seq(0,i=1..n-1),1] ;
        while not type(from32(dgs),'even') do
            dgs := roll32(dgs) ;
        end do:
        dgs := ListTools[Reverse](dgs) ;
        digcatL(%) ;
    end proc: # R. J. Mathar, Jun 25 2018

Formula

a(n) = A024629(A305498(n)). - R. J. Mathar, Jun 25 2018
Showing 1-10 of 33 results. Next