cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A081604 Number of digits in ternary representation of n.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5
Offset: 0

Views

Author

Reinhard Zumkeller, Mar 23 2003

Keywords

Comments

a(n) is the length of row n in table A054635. - Reinhard Zumkeller, Sep 05 2014

Examples

			a(8) = 2 because 8 = 22_3, having 2 digits.
a(9) = 3 because 9 = 100_3, having 3 digits.
		

Crossrefs

Programs

  • Haskell
    a081604 n = if n < 3 then 1 else a081604 (div n 3) + 1
    -- Reinhard Zumkeller, Sep 05 2014, Feb 21 2013
  • Maple
    A081604 := proc(n)
        max(1,1+ilog[3](n)) ;
    end proc: # R. J. Mathar, Jul 12 2016
  • Mathematica
    Table[Length[IntegerDigits[n, 3]], {n, 0, 99}] (* Alonso del Arte, Dec 30 2012 *)
    Join[{1},IntegerLength[Range[120],3]] (* Harvey P. Dale, Apr 07 2019 *)

Formula

a(n) = A062153(n) + 1 for n >= 1.
a(n) = A077267(n) + A062756(n) + A081603(n);
From Reinhard Zumkeller, Oct 19 2007: (Start)
0 <= A134021(n) - a(n) <= 1;
a(A134025(n)) = A134021(A134025(n));
a(A134026(n)) = A134021(A134026(n)) - 1. (End)
a(n+1) = -Sum_{k=1..n} mu(3*k)*floor(n/k). - Benoit Cloitre, Oct 21 2009
a(n) = floor(log_3(n)) + 1. - Can Atilgan and Murat Erşen Berberler, Dec 05 2012
a(n) = if n < 3 then 1 else a(floor(n/3)) + 1. - Reinhard Zumkeller, Sep 05 2014
G.f.: 1 + (1/(1 - x))*Sum_{k>=0} x^(3^k). - Ilya Gutkovskiy, Jan 08 2017

A081848 Number of numbers whose base-3/2 expansion (see A024629) has n digits.

Original entry on oeis.org

3, 3, 3, 6, 9, 12, 18, 27, 42, 63, 93, 141, 210, 315, 474, 711, 1065, 1599, 2397, 3597, 5394, 8091, 12138, 18207, 27309, 40965, 61446, 92169, 138255, 207381, 311073, 466608, 699912, 1049868, 1574802, 2362203, 3543306, 5314959, 7972437, 11958657
Offset: 1

Views

Author

N. J. A. Sloane, Apr 13 2003

Keywords

Comments

Run lengths in A246435. - Reinhard Zumkeller, Sep 05 2014

Examples

			a(1) = 3 because 0, 1 and 2 each have 1 digit.
		

Crossrefs

Programs

  • Haskell
    a081848 n = a081848_list !! (n-1)
    a081848_list = 3 : tail (zipWith (-) (tail a070885_list) a070885_list)
    -- Reinhard Zumkeller, Sep 05 2014
    
  • Python
    from itertools import islice
    def A081848_gen(): # generator of terms
        yield (a:=3)
        while True:
            yield (b:=(a+1>>1)+(a&1))
            a += b
    A081848_list = list(islice(A081848_gen(),70)) # Chai Wah Wu, Sep 20 2022

Formula

For n > 1, a(n) = A070885(n+1) - A070885(n). - Tom Edgar, Jun 25 2014
a(n) = 3*A073941(n). - Tom Edgar, Jul 21 2014

Extensions

More terms from David Wasserman, Jun 28 2004
Edited by Charles R Greathouse IV, Aug 02 2010

A024629 n written in fractional base 3/2.

Original entry on oeis.org

0, 1, 2, 20, 21, 22, 210, 211, 212, 2100, 2101, 2102, 2120, 2121, 2122, 21010, 21011, 21012, 21200, 21201, 21202, 21220, 21221, 21222, 210110, 210111, 210112, 212000, 212001, 212002, 212020, 212021, 212022, 212210, 212211, 212212, 2101100, 2101101
Offset: 0

Views

Author

Keywords

Comments

A246435(n) = (number of digits in a(n)) = A055642(a(n)). - Reinhard Zumkeller, Sep 05 2014
The number of positive even n such that a(n) has k+1 digits is A005428(k). - Glen Whitney, Jul 09 2017
The position of the rightmost "2" digit in a(3k), k >= 1, appears to be A087088(k). - Peter Munn, Jun 24 2020 [updated Peter Munn, Jul 14 2020 for new A087088 offset]

Examples

			Representations of the first few numbers are:
   0 =         0
   1 =         1
   2 =         2
   3 =       2 0
   4 =       2 1
   5 =       2 2
   6 =     2 1 0
   7 =     2 1 1
   8 =     2 1 2
   9 =   2 1 0 0
  10 =   2 1 0 1
  11 =   2 1 0 2
  12 =   2 1 2 0
  13 =   2 1 2 1
  14 =   2 1 2 2
  15 = 2 1 0 1 0
[extended and reformatted by _Peter Munn_, Jun 27 2020]
		

Crossrefs

Cf. A081848, A087088, A246435 (string lengths), A244040 (digit sums).

Programs

  • Haskell
    a024629 0 = 0
    a024629 n = 10 * a024629 (2 * n') + t where (n', t) = divMod n 3
    -- Reinhard Zumkeller, Sep 05 2014
  • Maple
    a:= proc(n) `if`(n<1, 0, irem(n, 3, 'q')+a(2*q)*10) end:
    seq(a(n), n=0..45);  # Alois P. Heinz, Jun 19 2018
  • Mathematica
    a[ n_] := If[ n < 1, 0, a[ Quotient[n, 3] 2] 10 + Mod[ n, 3]]; (* Michael Somos, Jun 18 2014 *)
  • PARI
    {a(n) = if( n<1, 0, a(n\3 * 2) * 10 + n%3)}; /* Michael Somos, Jun 18 2014 */
    
  • SageMath
    def basepqExpansion(p,q,n):
        L, i = [n], 1
        while L[i-1] >= p:
            x=L[i-1]
            L[i-1]=x.mod(p)
            L.append(q*(x//p))
            i+=1
        L.reverse()
        return Integer(''.join(str(x) for x in L))
    [basepqExpansion(3,2,n) for n in [0..40]] # Tom Edgar, Hailey R. Olafson, and James Van Alstine, Jun 17 2014; modified and corrected by G. C. Greubel, Aug 20 2019
    

Formula

To represent a number in base b, if a digit is >= b, subtract b and carry 1. In fractional base a/b, subtract a and carry b.
a(0)=0, a(3n+r) = 10*a(2n)+r for n >= 0 and r = 0, 1, 2. - Jianing Song, Oct 15 2022

Extensions

Tanton link corrected by Charles R Greathouse IV, Oct 20 2008

A244040 Sum of digits of n in fractional base 3/2.

Original entry on oeis.org

0, 1, 2, 2, 3, 4, 3, 4, 5, 3, 4, 5, 5, 6, 7, 4, 5, 6, 5, 6, 7, 7, 8, 9, 5, 6, 7, 5, 6, 7, 7, 8, 9, 8, 9, 10, 5, 6, 7, 7, 8, 9, 6, 7, 8, 7, 8, 9, 9, 10, 11, 9, 10, 11, 5, 6, 7, 7, 8, 9, 8, 9, 10, 6, 7, 8, 8, 9, 10, 8, 9, 10, 9, 10, 11, 11, 12, 13, 10, 11, 12, 5
Offset: 0

Views

Author

James Van Alstine, Jun 17 2014

Keywords

Comments

The base 3/2 expansion is unique, and thus the sum of digits function is well-defined.
Fixed point starting with 0 of the two-block substitution a,b -> a,a+1,a+2 for a = 0,1,2,... and b = 0,1,2,.... - Michel Dekking, Sep 29 2022

Examples

			In base 3/2 the number 7 is represented by 211 and so a(7) = 2 + 1 + 1 = 4.
		

Crossrefs

Programs

  • Haskell
    a244040 0 = 0
    a244040 n = a244040 (2 * n') + t where (n', t) = divMod n 3
    -- Reinhard Zumkeller, Sep 05 2014
    
  • Mathematica
    a[n_]:= a[n]= If[n==0, 0, a[2*Floor[n/3]] + Mod[n,3]]; Table[a[n], {n, 0, 85}] (* G. C. Greubel, Aug 20 2019 *)
  • PARI
    a(n) = if(n == 0, 0, a(n\3 * 2) + n % 3); \\ Amiram Eldar, Jul 30 2025
  • Python
    a244040 = lambda n: a244040((n // 3) * 2) + (n % 3) if n else 0 # David Radcliffe, Aug 21 2021
    
  • Sage
    def base32sum(n):
        L, i = [n], 1
        while L[i-1]>2:
            x=L[i-1]
            L[i-1]=x.mod(3)
            L.append(2*floor(x/3))
            i+=1
        return sum(L)
    [base32sum(n) for n in [0..85]]
    

Formula

a(0) = 0, a(3n+r) = a(2n)+r for n >= 0 and r = 0, 1, 2. - David Radcliffe, Aug 21 2021
a(n) = A007953(A024629(n)). - Amiram Eldar, Jul 30 2025

A303500 The smallest positive even integer that can be written with n digits in base 3/2.

Original entry on oeis.org

2, 21, 210, 2101, 21011, 210110, 2101100, 21011000, 210110001, 2101100011, 21011000110, 210110001101, 2101100011010, 21011000110100, 210110001101001, 2101100011010011, 21011000110100110, 210110001101001101
Offset: 0

Views

Author

Tanya Khovanova and PRIMES STEP Senior group, May 09 2018

Keywords

Comments

a(n) is a prefix of a(n+1).
The smallest, not necessarily even, integer in base 3/2 with n digits is a(n-1) with 0 added at the end.

Examples

			The number 5 in base 3/2 is 22, and the number 6 is 210. Therefore, 210 is the smallest even integer with 3 digits in base 3/2.
		

Crossrefs

See A024629 for the base-3/2 expansion of n.

Programs

  • Maple
    roll32 := proc(L)
        local piv,L1 ;
        piv := 1;
        L1 := subsop(piv=op(piv,L)+1,L) ;
        while op(piv,L1) >= 3 do
            L1 := [seq(0,i=1..piv), op(piv+1,L1)+1, seq(op(i,L1),i=piv+2..nops(L1))] ;
            piv := piv+1 ;
        end do:
        L1 ;
    end proc:
    from32 := proc(L)
        add( op(i,L)*(3/2)^(i-1),i=1..nops(L)) ;
    end proc:
    A303500 := proc(n)
        local dgs ;
        dgs := [seq(0,i=1..n-1),1] ;
        while not type(from32(dgs),'even') do
            dgs := roll32(dgs) ;
        end do:
        dgs := ListTools[Reverse](dgs) ;
        digcatL(%) ;
    end proc: # R. J. Mathar, Jun 25 2018

Formula

a(n) = A024629(A305498(n)). - R. J. Mathar, Jun 25 2018

A304024 a(n) is the largest integer with n digits in base 3/2.

Original entry on oeis.org

2, 22, 212, 2122, 21222, 212212, 2122112, 21221112, 212211122, 2122111222, 21221112212, 212211122122, 2122111221212, 21221112212112, 212211122121122, 2122111221211222, 21221112212112212, 212211122121122122
Offset: 0

Views

Author

Tanya Khovanova and PRIMES STEP Senior group, May 04 2018

Keywords

Comments

Every number starts and ends with 2 and contains only twos and ones.
Removing the last digit produces sequence A304272 of the largest even integers in base 3/2.
The value of this sequence in base 10 is A304025.
When adding 1 to the value of this sequence we get A070885.
The largest integer with a given number of digits in base 3/2 can be produced directly from the smallest number, sequence A304023, by replacing 21 at the beginning and 0 at the end with 2, and by shifting the rest up by 1, see sequence A304023.

Examples

			The number 5 in base 3/2 is 22, and the number 6 is 210. Therefore, 22 is the largest two-digit integer.
		

Crossrefs

Programs

  • PARI
    first(n) = {my(res=vector(n), c = 2); res[1]=2; for(i=2, n, res[i] = 10 * res[i-1] + 2; if(c % 2 == 1, res[i] -= 10); c = 3 * c / 2 + if(c%2==0, 2, 1/2)); res} \\ David A. Corneth, May 11 2018

Formula

a(1) = 2, for n > 1, a(n) = 10 * a(n - 1) + 2 if A304025(n - 1) is even. Otherwise, a(n) = 10 * a(n - 1) - 8. - David A. Corneth, May 11 2018

A304025 a(n) is the largest integer that can be written with n digits in base 3/2.

Original entry on oeis.org

2, 5, 8, 14, 23, 35, 53, 80, 122, 185, 278, 419, 629, 944, 1418, 2129, 3194, 4793, 7190, 10787, 16181, 24272, 36410, 54617, 81926, 122891, 184337, 276506, 414761, 622142, 933215, 1399823, 2099735, 3149603, 4724405, 7086608, 10629914
Offset: 1

Views

Author

Tanya Khovanova and PRIMES STEP Senior group, May 04 2018

Keywords

Comments

A070885 is the smallest integer that can be written with n digits in base 3/2.
This sequence represented in base 3/2 is A304024.

Examples

			The number 5 in base 3/2 is 22, and the number 6 is 210. Therefore, 5 is the largest integer needing two digits in base 3/2.
		

Crossrefs

Programs

  • PARI
    first(n) = {my(res = vector(n)); res[1] = 2; for(i = 2, n, res[i] = 3 * res[i-1] / 2 + if(res[i-1] % 2==0, 2, 1/2));res} \\ David A. Corneth, May 11 2018

Formula

a(n) = A070885(n+1) - 1.

A304272 The largest even integer that can be written with n digits in base 3/2.

Original entry on oeis.org

2, 21, 212, 2122, 21221, 212211, 2122111, 21221112, 212211122, 2122111221, 21221112212, 212211122121, 2122111221211, 21221112212112, 212211122121122, 2122111221211221, 21221112212112212, 212211122121122121, 2122111221211221212, 21221112212112212121, 212211122121122121211, 2122111221211221212112
Offset: 1

Views

Author

Tanya Khovanova and PRIMES STEP Senior group, May 09 2018

Keywords

Comments

a(n) is a prefix of a(n+1).
The largest, not necessarily even, integer in base 3/2 with n digits is a(n-1) with 2 added at the end.

Examples

			The number 4 in base 3/2 is 21, and number 6 is 210. Therefore, 21 is the largest even integer with 2 digits in base 3/2.
		

Crossrefs

Programs

  • Mathematica
    Table[StringTake["212211122121122121211221211212112", n], {n, 32}]

A304273 The concatenation of the first n terms is the smallest positive even number with n digits when written in base 3/2 (cf. A024629).

Original entry on oeis.org

2, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0
Offset: 1

Views

Author

Tanya Khovanova and PRIMES STEP Senior group, May 09 2018

Keywords

Comments

This sequence exists since the smallest even integers (see A303500) are prefixes of each other.
Apparently a variant of A205083. - R. J. Mathar, Jun 09 2018

Examples

			The number 5 in base 3/2 is 22, and the number 6 is 210. Therefore 210 is the smallest even integer with 3 digits in base 3/2. Its prefix 21 is 4: the smallest even integer with 2 digits in base 3/2.
		

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n<2, 2*n,
          (t-> t+irem(t, 2))(b(n-1)*3/2))
        end:
    a:= n-> b(n)-3/2*b(n-1):
    seq(a(n), n=1..105);  # Alois P. Heinz, Jun 21 2018
  • Mathematica
    b[n_] := b[n] = If[n < 2, 2*n, Function[t, t + Mod[t, 2]][3/2 b[n - 1]]]; a[n_] := b[n] - 3/2 b[n - 1]; Table[a[n], {n, 1, 105}] (* Robert P. P. McKone, Feb 12 2021 *)

Formula

For n>1, a(n) = A304274(n-1) - 1.

Extensions

More terms from Alois P. Heinz, Jun 21 2018

A304023 a(n) is the smallest integer with n digits in base 3/2 expressed in base 3/2.

Original entry on oeis.org

0, 20, 210, 2100, 21010, 210110, 2101100, 21011000, 210110000, 2101100010, 21011000110, 210110001100, 2101100011010, 21011000110100, 210110001101000, 2101100011010010, 21011000110100110, 210110001101001100, 2101100011010011010, 21011000110100110100, 210110001101001101010
Offset: 1

Views

Author

Tanya Khovanova and PRIMES STEP Senior group, May 04 2018

Keywords

Comments

Excluding 0, every term starts with 2 and has exactly one 2.
The last digit is always zero.
Removing the last digit produces the sequence A303500 of the smallest even integers in base 3/2.
The value of this sequence in base 10 is A070885.
When subtracting 1 from the value of this sequence we get A304025.
The largest integer with a given number of digits in base 3/2 can be produced directly from this sequence by replacing 21 at the beginning and 0 at the end with 2, and by shifting the rest up by 1, see sequence A304024.

Examples

			The number 5 in base 3/2 is 22, and the number 6 is 210. Therefore, 210 is the smallest three-digit integer.
		

Crossrefs

Programs

  • Maple
    b:= proc(n) b(n):= `if`(n=1, 1, 3*ceil(b(n-1)/2)) end:
    g:= proc(n) g(n):= `if`(n<2, 0, irem(n, 3, 'q')+g(2*q)*10) end:
    a:= n-> g(b(n)):
    seq(a(n), n=1..30);  # Alois P. Heinz, Feb 13 2021
  • PARI
    f(n) = if( n<1, 0, f(n\3 * 2) * 10 + n%3);
    a(n) = {my(k=0); while(#Str(f(k)) != n, k++); f(k);} \\ Michel Marcus, Jun 19 2018
  • Python
    def f(n): return 0 if n < 1 else f(n//3*2)*10 + n%3
    def a(n):
      k = 0
      while len(str(f(k))) != n: k += 1
      return f(k)
    print([a(n) for n in range(1, 22)]) # Michael S. Branicky, Feb 12 2021 after Michel Marcus
    

Formula

a(n) = A024629(A070885(n)). - Michel Marcus, Jun 19 2018

Extensions

More terms from Michel Marcus, Jun 19 2018
Showing 1-10 of 15 results. Next