cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A024700 a(n) = (prime(n+2)^2 - 1)/3.

Original entry on oeis.org

8, 16, 40, 56, 96, 120, 176, 280, 320, 456, 560, 616, 736, 936, 1160, 1240, 1496, 1680, 1776, 2080, 2296, 2640, 3136, 3400, 3536, 3816, 3960, 4256, 5376, 5720, 6256, 6440, 7400, 7600, 8216, 8856, 9296, 9976, 10680, 10920, 12160, 12416, 12936, 13200, 14840, 16576, 17176
Offset: 1

Views

Author

Clark Kimberling, Dec 11 1999

Keywords

Comments

Numbers of the form 4*h*(3*h +- 1). - Vincenzo Librandi, May 21 2013
This sequence is also: Numbers n such that k is prime and its square is of the form 3*n + 1 (i.e., k^2 = 3*n + 1). For this case, the sequence is to be prepended with a(0) = 1. - G. C. Greubel, Sep 18 2016

Crossrefs

Programs

  • Magma
    [(NthPrime(n+2)^2-1)/3: n in [1..50]]; // Bruno Berselli, May 22 2013
    
  • Mathematica
    Select[Range[2,10000], PrimeQ[Sqrt[3*#+1]] &] (* G. C. Greubel, Sep 18 2016 *)
    (Prime[Range[3,50]]^2-1)/3 (* Harvey P. Dale, May 05 2022 *)
  • PARI
    a(n) = (prime(n+2)^2-1)/3; \\ Altug Alkan, Sep 18 2016
    
  • SageMath
    [(n^2 -1)/3 for n in prime_range(4,301)] # G. C. Greubel, May 02 2024

Formula

a(n) = (A001248(n+2) - 1)/3. - Elmo R. Oliveira, Jan 20 2023
a(n) = 8*A024702(n+2) = 4*A081115(n+2) = 2*A084922(n+2) = (2/3)*A084921(n) = (4/3)*A024701(n+1) = (8/3)*A061066(n+2). - Alois P. Heinz, Jan 20 2023