A024816 Antisigma(n): Sum of the numbers less than n that do not divide n.
0, 0, 2, 3, 9, 9, 20, 21, 32, 37, 54, 50, 77, 81, 96, 105, 135, 132, 170, 168, 199, 217, 252, 240, 294, 309, 338, 350, 405, 393, 464, 465, 513, 541, 582, 575, 665, 681, 724, 730, 819, 807, 902, 906, 957, 1009, 1080, 1052, 1168, 1182, 1254, 1280, 1377, 1365
Offset: 1
Examples
a(12)=50 as 5+7+8+9+10+11 = 50 (1,2,3,4,6 not included as they divide 12).
Links
- N. J. A. Sloane, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Haskell
a024816 = sum . a173541_row -- Reinhard Zumkeller, Feb 19 2014
-
Magma
[n*(n+1) div 2- SumOfDivisors(n): n in [1..60]]; // Vincenzo Librandi, Dec 29 2015
-
Maple
A024816 := proc(n) n*(n+1)/2-numtheory[sigma](n) ; end proc: # R. J. Mathar, Aug 03 2013
-
Mathematica
Table[n(n + 1)/2 - DivisorSigma[1, n], {n, 55}] (* Robert G. Wilson v *) Table[Total[Complement[Range[n],Divisors[n]]],{n,60}] (* Harvey P. Dale, Sep 23 2012 *) With[{nn=60},#[[1]]-#[[2]]&/@Thread[{Accumulate[Range[nn]],DivisorSigma[ 1,Range[nn]]}]] (* Harvey P. Dale, Nov 22 2014 *)
-
PARI
a(n)=n*(n+1)/2-sigma(n) \\ Charles R Greathouse IV, Mar 19 2012
-
Python
from sympy import divisor_sigma def A024816(n): return (n*(n+1)>>1)-divisor_sigma(n) # Chai Wah Wu, Apr 28 2023
-
SageMath
def A024816(n): return sum(k for k in (0..n-1) if not k.divides(n)) print([A024816(n) for n in srange(1, 55)]) # Peter Luschny, Nov 14 2023
Formula
From Wesley Ivan Hurt, Jul 16 2014, Dec 28 2015: (Start)
a(n) = Sum_{i=1..n} i * ( ceiling(n/i) - floor(n/i) ).
a(n) = Sum_{k=1..n} (n mod k) + (-n mod k). (End)
G.f.: x/(1 - x)^3 - Sum_{k>=1} k*x^k/(1 - x^k). - Ilya Gutkovskiy, Sep 18 2017
From Omar E. Pol, Mar 21 2021: (Start)
a(p) = (p-2)*(p+1)/2 for p prime. - Bernard Schott, Apr 12 2022
Comments