cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A024918 Partial sums of the sequence of prime powers (A000961).

Original entry on oeis.org

1, 3, 6, 10, 15, 22, 30, 39, 50, 63, 79, 96, 115, 138, 163, 190, 219, 250, 282, 319, 360, 403, 450, 499, 552, 611, 672, 736, 803, 874, 947, 1026, 1107, 1190, 1279, 1376, 1477, 1580, 1687, 1796, 1909, 2030, 2155, 2282, 2410, 2541, 2678, 2817, 2966, 3117, 3274, 3437
Offset: 1

Views

Author

Den Roussel (DenRoussel(AT)webtv.net)

Keywords

Comments

The subsequence of prime partial sums of prime powers begins: 3, 79, 163, 499, 947, 1279, 5297. What is the smallest value which is a prime power p^k for k>1? [Jonathan Vos Post, Feb 11 2010]

Crossrefs

Programs

  • Mathematica
    FoldList[Plus, 1, Select[Range[150], PrimePowerQ]] (* Amiram Eldar, Jun 22 2025 *)
  • PARI
    ispp1(n) = isprimepower(n) || (n==1); \\ A000961
    lista(nn) = {my(s=0); for (n=1, nn, if (ispp1(n), s+= n; print1(s, ", ")););} \\ Michel Marcus, Mar 26 2020

Extensions

Offset 1 from Michel Marcus, Mar 26 2020

A385378 The maximum possible number of distinct factors in the factorization of n into prime powers (A246655).

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 2, 2, 1, 2, 2, 3, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 2, 3, 2, 2, 1, 3, 1, 2, 2, 3, 2, 3, 1, 2, 2, 3, 1, 3, 1, 2, 2, 2, 2, 3, 1, 3, 2, 2, 1, 3, 2, 2, 2
Offset: 1

Views

Author

Amiram Eldar, Jun 27 2025

Keywords

Comments

Differs from A376885 and A384422 at n = 32, 64, 96, 128, 160, 192, ... .
Differs from A086435 at n = 36, 100, 144, 180, 196, 225, ... .
Differs from A375272 at n = 128, 384, 640, 896, 1024, 1152, ... .
a(n) depends only on the prime signature of n (A118914).
The indices of records in this sequence are the partial products of the sequence of powers of primes (A000961), i.e., the terms in A024923.
The least index n such that a(n) = k, for k = 0, 1, 2, ..., is A024923(k+1).

Examples

			      n | a(n) | factorization
  ------+------+--------------------------------
      2 |  1   | 2
      6 |  2   | 2 * 3
     24 |  3   | 2 * 3 * 2^2
    120 |  4   | 2 * 3 * 2^2 * 5
    840 |  5   | 2 * 3 * 2^2 * 5 * 7
   6720 |  6   | 2 * 3 * 2^2 * 5 * 7 * 2^3
  60480 |  7   | 2 * 3 * 2^2 * 5 * 7 * 2^3 * 3^2
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := Floor[(Sqrt[8*e + 1] - 1)/2]; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecsum(apply(x -> (sqrtint(8*x+1)-1)\2 , factor(n)[, 2]));

Formula

Additive with a(p^e) = A003056(e).
a(n) >= A001221(n), with equality if and only if n is cubefree (A004709).
a(n) >= 1 for n >= 2, with equality if and only if n is a prime or a square of a prime (A000430).
Sum_{k=1..n} a(k) ~ n * (log(log(n)) + B + C), where B is Mertens's constant (A077761), C = Sum_{k>=2} P(k*(k+1)/2) = 0.19285739770001405035..., and P is the prime zeta function.

A334395 Partial products of A334393.

Original entry on oeis.org

1, 2, 6, 24, 120, 840, 6720, 60480, 665280, 8648640, 147026880, 2793510720, 64250746560, 1606268664000, 43369253928000, 1257708363912000, 38988959281272000, 1247646697000704000, 46162927789026048000, 1892680039350067968000, 81385241692052922624000
Offset: 1

Views

Author

Kevin Foote, Apr 26 2020

Keywords

Examples

			a(6) = 1*2*3*4*5*7 = 840.
		

Crossrefs

Programs

  • Mathematica
    Rest @ FoldList[Times, 1, Select[Range[43], Length[(f = FactorInteger[#])] == 1 && ((e = f[[1, 2]]) == 1 || PrimeQ[e]) &]] (* Amiram Eldar, May 11 2020 *)
  • PARI
    isok(n) = if (n==1, return (1)); my(k=isprimepower(n)); (k==1) || isprime(k); \\ A334393
    lista(nn) = {my(v = select(x->isok(x), [1..nn]), p=1); for (n=1, #v, p *= v[n]; print1(p, ", "););} \\ Michel Marcus, May 11 2020

Formula

a(n) = Product_{i=1..n} A334393(i).

A385380 Partial products of the sequence nonprime powers of primes (A025475).

Original entry on oeis.org

1, 4, 32, 288, 4608, 115200, 3110400, 99532800, 4877107200, 312134860800, 25282923724800, 3059233770700800, 382404221337600000, 48947740331212800000, 8272168115974963200000, 2010136852181916057600000, 514595034158570510745600000, 148717964871826877605478400000
Offset: 1

Views

Author

Amiram Eldar, Jun 27 2025

Keywords

Comments

Indices of records in A385379.
a(n) is the least index k such that A385379(k) = n-1.

Crossrefs

Subsequence of A001694 and A025487 (i.e., of A181800).

Programs

  • Mathematica
    FoldList[Times, 1, Select[Range[250], !PrimeQ[#] && PrimePowerQ[#] &]] (* Amiram Eldar, Jun 27 2025 *)
  • PARI
    list(lim) = {my(p = 1); print1(p, ", "); for(k = 2, lim, if(isprimepower(k) > 1, p *= k; print1(p, ", ")));}

Formula

a(n) = Product_{k=1..n} A025475(k).

A308819 Product of prime powers <= n.

Original entry on oeis.org

1, 1, 2, 6, 24, 120, 120, 840, 6720, 60480, 60480, 665280, 665280, 8648640, 8648640, 8648640, 138378240, 2352430080, 2352430080, 44696171520, 44696171520, 44696171520, 44696171520, 1028011944960, 1028011944960, 25700298624000, 25700298624000, 693908062848000
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 26 2019

Keywords

Comments

a(n) is the smallest number that's divisible by all numbers less than or equal to n. - Keith F. Lynch, Apr 24 2025

Examples

			a(9) = 60480 because 2, 3, 4, 5, 7, 8, 9 are the prime powers less than or equal to 9 and 2 * 3 * 4 * 5 * 7 * 8 * 9 = 60480.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Product[If[PrimePowerQ[k], k, 1], {k, 1, n}]; Table[a[n], {n, 0, 27}]
    Module[{nn=50,ppwr},ppwr=Select[Range[nn],PrimePowerQ[#]&];Table[Times@@ Select[ ppwr,#<= n&],{n,0,nn}]] (* Harvey P. Dale, Apr 03 2024 *)
  • PARI
    a(n) = prod(k=1, n, if (isprime(k) || isprimepower(k), k, 1)); \\ Michel Marcus, Jun 27 2019

A380318 Product of the first n perfect powers (A001597).

Original entry on oeis.org

1, 1, 4, 32, 288, 4608, 115200, 3110400, 99532800, 3583180800, 175575859200, 11236854988800, 910185254092800, 91018525409280000, 11013241574522880000, 1376655196815360000000, 176211865192366080000000, 25374508587700715520000000, 4288291951321420922880000000, 840505222458998500884480000000, 181549128051143676191047680000000
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 20 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1},FoldList[Times,Join[{1},Select[Range[250],GCD@@FactorInteger[#][[All,2]]>1&]]]] (* Harvey P. Dale, May 03 2025 *)
Showing 1-6 of 6 results.