cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A024997 a(n) = number of (s(0), s(1), ..., s(n)) such that every s(i) is an integer, s(0) = 0 = s(n), |s(i) - s(i-1)| = 1 for i = 1,2; |s(i) - s(i-1)| <= 1 for i >= 3. Also a(n) = T(n,n), where T is the array defined in A024996.

Original entry on oeis.org

2, 8, 20, 58, 162, 462, 1318, 3782, 10886, 31436, 91016, 264134, 768094, 2237640, 6529284, 19079574, 55826166, 163538472, 479588844, 1407813438, 4136307798, 12163015662, 35793391662, 105407889930, 310620540202, 915913267652, 2702265079208
Offset: 3

Views

Author

Keywords

Comments

Second differences of the central trinomial coefficients A002426. - T. D. Noe, Mar 16 2005

Crossrefs

Cf. A025179.

Programs

  • Mathematica
    Rest[Differences[CoefficientList[Series[1/Sqrt[(1 + x) (1 - 3 x)], {x, 0, 30}], x], 2]] (* Harvey P. Dale, May 11 2013 *)
    Table[2 Sum[Binomial[n, 2 k] Binomial[2 k + 1, k + 1], {k, 0, Floor[n/2]}],  {n, 1, 25}] (* G. C. Greubel, Mar 01 2017 *)
    Rest[Rest[CoefficientList[Series[((1 - x)^2 - (1 - x) Sqrt[1 - 2 x - 3 x^2])/(x Sqrt[1 - 2 x - 3 x^2]), {x, 0, 15}], x]]] (* G. C. Greubel, Mar 02 2017 *)
  • PARI
    x='x +O('x^50); Vec(((1-x)^2-(1-x +2*x^2)*sqrt(1-2*x-3*x^2)) /(x*sqrt(1 - 2*x -3*x^2))) \\ G. C. Greubel, Mar 01 2017

Formula

a(n) = 2*A025179(n-1).
From G. C. Greubel, Mar 01 2017: (Start)
a(n) = 2*Sum_{k=0..floor(n/2)} binomial(n, 2*k)*binomial(2*k+1, k+1), for n>=1.
O.g.f.: ((1-x)^2-(1-x+2*x^2)*sqrt(1-2*x-3*x^2)) / sqrt(1-2*x-3*x^2) [corrected by Charles R Greathouse IV, Mar 05 2017]
E.g.f.: 2*exp(x)*(BesselI(0, 2*x) + BesselI(2, 2*x)). (End)

A024998 a(n) = number of (s(0), s(1), ..., s(n)) such that every s(i) is an integer, s(0) = 0, |s(i) - s(i-1)| = 1 for i = 1,2; |s(i) - s(i-1)| <= 1 for i >= 3, s(n) = 1. Also a(n) = T(n,n-1), where T is the array defined in A024996.

Original entry on oeis.org

1, 0, 3, 6, 19, 52, 150, 428, 1232, 3552, 10275, 29790, 86559, 251980, 734773, 2145822, 6275145, 18373296, 53856153, 158025186, 464112297, 1364247180, 4013353932, 11815188000, 34807249134, 102606325136, 302646363725, 893175905778
Offset: 1

Views

Author

Keywords

Comments

Comments from David Callan, Jul 15 2004: "a(n+1) is the number of Motzkin (2n)-paths whose longest level segment has length n. (A level segment is a maximal sequence of contiguous flatsteps.) Example: with n=3, the paths counted by a(4) are FFFUDF, FFFUFD, FUDFFF, FUFFFD, UFDFFF, UFFFDF. Here is a bijection to the sequences (s(i)) above.
"Given such a Motzkin (2n)-path, delete the (unique) longest level segment to split the path into A,B. Form the path BUA (U can be recovered as the up step immediately following the rightmost of the lowest points on this path). This path will not start or end with F.
"Transfer the level segment (if any) following the first step to the end. Code the resulting path with 1 for U, 0 for F and -1 for D. Then take partial sums (including the empty sum) to get a sequence (s(i)). Example: UF^9UFFUDDDF -> U,UFFUDDDF -> UFFUDDDFUU -> UUDDDFUUFF -> 1,1,-1,-1,-1,0,1,1,0,0 -> (0,1,2,1,0,-1,-1,0,1,1,1)."

Programs

  • Mathematica
    Rest[CoefficientList[Series[(1-x)^2*((1-x)*(1-2*x-3*x^2)^(-1/2)-1)/(2*x), {x, 0, 20}], x]] (* Vaclav Kotesovec, Feb 13 2014 *)

Formula

a(n+1)=sum(j=1..n/2, C[n-1, 2j-1] C[2j+1, j]). This sum counts the Motzkin (2n)-paths above by number j of up steps and the sequences (s(i)) by number j of indices i for which s(i) - s(i-1) = -1. GF: (1-x)^2 ( (1-x)(1-2x-3x^2)^(-1/2) - 1 )/(2x). - David Callan, Jul 15 2004
Conjecture: (n+1)*a(n) +(-3*n+2)*a(n-1) +(-n-7)*a(n-2) +3*(n-4)*a(n-3)=0. - R. J. Mathar, Jun 23 2013
a(n) ~ 2 * 3^(n+1/2) / (9 * sqrt(Pi*n)). - Vaclav Kotesovec, Feb 13 2014

A026069 a(n) = number of (s(0), s(1), ..., s(n)) such that every s(i) is an integer, s(0) = 0, |s(i) - s(i-1)| = 1 for i = 1,2; |s(i) - s(i-1)| <= 1 for i >= 3, s(n) = 2. Also a(n) = T(n,n-2), where T is the array defined in A024996.

Original entry on oeis.org

1, 5, 13, 40, 116, 342, 1002, 2941, 8629, 25333, 74405, 218659, 642955, 1891683, 5568867, 16403283, 48342867, 142548639, 420546039, 1241293314, 3665526270, 10829045472, 32005684340, 94632148659, 279909001851, 828235716571, 2451561077995
Offset: 3

Views

Author

Keywords

Crossrefs

First differences of A025180. Second differences of A014531.

Extensions

a(29) corrected by Sean A. Irvine, Sep 14 2019

A026070 a(n) = number of (s(0), s(1), ..., s(n)) such that every s(i) is an integer, s(0) = 0, |s(i) - s(i-1)| = 1 for i = 1,2; |s(i) - s(i-1)| <= 1 for i >= 3, s(n) = 3. Also a(n) = T(n,n-3), where T is the array defined in A024996.

Original entry on oeis.org

1, 2, 8, 24, 76, 232, 707, 2136, 6429, 19282, 57695, 172316, 513955, 1531362, 4559271, 13566288, 40349619, 119972214, 356634978, 1059985776, 3150165270, 9361450868, 27819215185, 82670528056, 245680350995, 730149455646, 2170105711452
Offset: 3

Views

Author

Keywords

Crossrefs

First differences of A025181. Second differences of A014532.

Formula

Conjecture: (n+3)*a(n) +(-5*n-6)*a(n-1) +(3*n-11)*a(n-2) +(11*n-8)*a(n-3) +2*(-2*n+17)*a(n-4) +6*(-n+6)*a(n-5)=0. - R. J. Mathar, Jun 23 2013

A026071 a(n) = number of (s(0), s(1), ..., s(n)) such that every s(i) is an integer, s(0) = 0, |s(i) - s(i-1)| = 1 for i = 1,2; |s(i) - s(i-1)| <= 1 for i >= 3, s(n) = 4. Also a(n) = T(n,n-4), where T is the array defined in A024996.

Original entry on oeis.org

1, 3, 12, 40, 133, 427, 1352, 4224, 13080, 40216, 122980, 374452, 1136226, 3438150, 10380048, 31279728, 94114125, 282804759, 848886180, 2545759328, 7628718845, 22845628531, 68377674280, 204560102800, 611720539235, 1828673918721
Offset: 4

Views

Author

Keywords

Comments

First differences of A025182.

Formula

Conjecture: -(n-4)*(n+4)*a(n) +(4*n+7)*(n-4)*a(n-1) +(-2*n^2+23*n-12)*a(n-2) -(4*n+3)*(n-4)*a(n-3) +3*(n-4)*(n-5)*a(n-4)=0. - R. J. Mathar, Jun 22 2013

A026078 a(n) = T(n,[ n/2 ]), where T is the array defined in A024996.

Original entry on oeis.org

1, 1, 2, 1, 5, 8, 24, 40, 133, 218, 736, 1203, 4135, 6743, 23452, 38194, 134043, 218115, 770864, 1253614, 4455462, 7242629, 25859380, 42022984, 150615223, 244700887, 879876040, 1429252775, 5153445895, 8369948745, 30251941860, 49127900370
Offset: 0

Views

Author

Keywords

A026079 a(n) = Sum_{k = 1..n} T(k,k-1), where T is the array defined in A024996.

Original entry on oeis.org

1, 3, 6, 12, 31, 83, 233, 661, 1893, 5445, 15720, 45510, 132069, 384049, 1118822, 3264644, 9539789, 27913085, 81769238, 239794424, 703906721, 2068153901, 6081507833, 17896695833, 52703944967, 155310270103, 457956633828, 1351132539606, 3988457429607
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A025179.

Programs

  • Mathematica
    Join[{1, 3}, Table[Sum[ Binomial[n, 2*k]*Binomial[2*k + 1, k + 1], {k, 0, Floor[n/2]}] + 2, {n,2,50}]] (* G. C. Greubel, May 22 2017 *)
  • PARI
    concat([1,3], for(n=2,50, print1(2 + sum(k=0,floor(n/2), binomial(n, 2*k)*binomial(2*k+1, k+1)), ", "))) \\ G. C. Greubel, May 22 2017

Formula

a(n) = A025179(n) + 2, n>2.

A026080 Sum{T(n,k)}, k = 0,1,...,n, where T is the array defined in A024996.

Original entry on oeis.org

1, 2, 4, 7, 22, 64, 191, 567, 1689, 5033, 15013, 44809, 133816, 399802, 1194949, 3572693, 10684758, 31962456, 95633229, 286193409, 856610214, 2564317356, 7677475521, 22988860305, 68843627049, 206183053485, 617563017927, 1849887488987
Offset: 0

Views

Author

Keywords

Crossrefs

First differences of A027914.

A026072 a(n) = T(2n-1,n), where T is the array defined in A024996.

Original entry on oeis.org

1, 3, 13, 76, 427, 2427, 13871, 79729, 460473, 2670394, 15540822, 90717305, 530946697, 3114680815, 18308774295, 107817336510, 635942014275, 3756423495198, 22217666030882, 131563775350068
Offset: 1

Views

Author

Keywords

A026073 T(2n,n), where T is the array defined in A024996.

Original entry on oeis.org

1, 2, 5, 24, 133, 736, 4135, 23452, 134043, 770864, 4455462, 25859380, 150615223, 879876040, 5153445895, 30251941860, 177938418225, 1048452751872, 6187400646130, 36566048896896, 216370786646054
Offset: 0

Views

Author

Keywords

Crossrefs

Bisection of A026078.
Showing 1-10 of 17 results. Next