cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A025225 a(n) = a(1)*a(n-1) + a(2)*a(n-2) + ...+ a(n-1)*a(1) for n >= 2. Also a(n) = (2^n)*C(n-1), where C = A000108 (Catalan numbers).

Original entry on oeis.org

2, 4, 16, 80, 448, 2688, 16896, 109824, 732160, 4978688, 34398208, 240787456, 1704034304, 12171673600, 87636049920, 635361361920, 4634400522240, 33985603829760, 250420238745600, 1853109766717440, 13765958267043840, 102618961627054080, 767411365211013120
Offset: 1

Views

Author

Keywords

Comments

Number of generators of degree n of the Hopf algebra of 2-colored planar binary trees. Also, dimensions of the graded components of the primitive Lie algebra of the same Hopf algebra. - Jean-Yves Thibon (jyt(AT)univ-mlv.fr), Jun 26 2008

Crossrefs

Essentially identical to A115125.
Cf. A052701.

Programs

  • Magma
    [2^n*Catalan(n-1): n in [1..30]]; // Vincenzo Librandi, Nov 06 2016
  • Maple
    a:= n-> (2^n)*binomial(2*n-2, n-1)/n:
    seq(a(n), n=1..25); # Alois P. Heinz, Jan 27 2012
  • Mathematica
    InverseSeries[Series[y/2-y^2/2, {y, 0, 24}], x] (* then A(x)=y(x) *) (* Len Smiley, Apr 13 2000 *)
    a[n_] := 2^n*CatalanNumber[n - 1]; Table[a[n], {n, 1, 23}] (* Jean-François Alcover, Jul 09 2013 *)
  • PARI
    a(n)=polcoeff((1-sqrt(1-8*x+x*O(x^n)))/2,n)
    

Formula

G.f.: (1-sqrt(1-8*x))/2. - Michael Somos, Jun 08 2000
Given g.f. C(x) and given A(x)= g.f. of A100238, then B(x)=A(x)-1-x satisfies B(x)=x-C(x*B(x)). - Michael Somos, Sep 07 2005
n*a(n) + 4*(-2*n+3)*a(n-1) = 0. - R. J. Mathar, Feb 25 2015
a(n) = 2*A052701(n). - Alois P. Heinz, Feb 16 2025

Extensions

Typo in definition corrected by R. J. Mathar, Aug 11 2008