cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A025230 a(n) = a(1)*a(n-1) + a(2)*a(n-2) + ...+ a(n-1)*a(1) for n >= 3, with initial terms 3,1.

Original entry on oeis.org

3, 1, 6, 37, 234, 1514, 9996, 67181, 458562, 3172478, 22206420, 157027938, 1120292388, 8055001716, 58314533400, 424740506109, 3110401363122, 22888001498102, 169155516667524, 1255072594261142, 9345400450314924, 69812926066668044, 523072984217339304
Offset: 1

Views

Author

Keywords

Crossrefs

For Sum_{k = 0..n} m^(n-k)*binomial(n, k)*Catalan(k+1) see A126120 (m = -2), A001006 (m = -1), A000108 (m = 0), A002212 (m = 1), A005572 (m = 2), A182401 (m = 3), A025230 (m = 4).

Programs

  • Maple
    h := n -> simplify(4^n*hypergeom([3/2, -n], [3], -1)):
    a := n -> `if`(n=1, 3, h(n-2)):
    seq(a(n), n=1..21); # Peter Luschny, Feb 03 2015
  • Mathematica
    Rest[CoefficientList[Series[(1-Sqrt[1-12x+32x^2])/2,{x,0,30}],x]]  (* Harvey P. Dale, Feb 22 2011 *)
  • PARI
    a(n)=polcoeff((1-sqrt(1-12*x+32*x^2+x*O(x^n)))/2,n)
    
  • PARI
    {a(n)=if(n<2, 3*(n==1), n--; polcoeff( serreverse( x/(1+6*x+x^2) +x*O(x^n) ), n))} /* Michael Somos, Oct 14 2006 */

Formula

G.f.: (1-sqrt(1-12*x+32*x^2))/2. - Michael Somos, Jun 08 2000
D-finite with recurrence n*a(n) = (12*n-18)*a(n-1) - 32*(n-3)*a(n-2) - Richard Choulet, Dec 17 2009
a(n) ~ 2^(3*n-5/2)/(sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 11 2013
a(n) = 4^(n-2)*hypergeom([3/2, -n+2], [3], -1) for n>1. - Peter Luschny, Feb 03 2015
a(n+1) = GegenbauerC(n-1, -n, -3)/n for n>=1. - Peter Luschny, May 09 2016
From Peter Bala, Feb 03 2024: (Start)
G.f.: 3*x + x^2/(1 - 4*x) * c(x/(1 - 4*x))^2, where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108.
a(n+2) = Sum_{k = 0..n} 4^(n-k)*binomial(n, k)*Catalan(k+1).
G.f.: 3*x + x^2/(1 - 8*x) * c(-x/(1 - 8*x))^2.
a(n+2) = 8^n * Sum_{k = 0..n} (-8)^(-k)*binomial(n, k)*Catalan(k+1).
a(n+2) = 8^n * hypergeom([-n, 3/2], [3], 1/2).
a(n) is odd iff n is a power of 2. (End)

Extensions

Name clarified by Robert C. Lyons, Feb 06 2025