cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A025243 a(n) = a(1)*a(n-1) + a(2)*a(n-2) + ... + a(n-3)*a(3) for n >= 4, with initial terms 1, 2, 1, 1.

Original entry on oeis.org

1, 2, 1, 1, 3, 6, 14, 33, 79, 194, 482, 1214, 3090, 7936, 20544, 53545, 140399, 370098, 980226, 2607242, 6961462, 18652112, 50133616, 135140598, 365254226, 989614976, 2687312752, 7312725944, 19938170096, 54460115308, 149007155356, 408341969073
Offset: 1

Views

Author

Keywords

Comments

a(n) is the number of Dyck (n-1)-paths that contain no DUDU's and no UUDD's (n>=3). For example, a(5)=3 counts UUUDUDDD, UDUUDUDD, UUDUDDUD. - David Callan, Sep 25 2006
Apart from the first three terms, the total number of bargraphs of semiperimeter n with no levels for n>=2. The sequence begins: 1, 3, 6, 14, 33, ... - Arnold Knopfmacher, Nov 01 2016

Programs

  • Magma
    a:=[1,2,1]; for n in [4..35] do Append(~a,&+[a[k]*a[n-k]:k in [1..n-3]] ); end for; a; // Marius A. Burtea, Jan 02 2020
  • Mathematica
    CoefficientList[Series[(1 + x + 2 x^2 - Sqrt[1 - 2 x - 3 x^2 + 4 x^4]) / 2 / x, {x, 0, 40}], x] (* Vincenzo Librandi, Feb 15 2015 *)
  • PARI
    a(n)=polcoeff((x+2*x^2-sqrt(1-2*x-3*x^2+4*x^4+x*O(x^n)))/2,n)
    

Formula

G.f.: (1 + x + 2*x^2 - sqrt(1 - 2*x - 3*x^2 + 4*x^4))/2. - Michael Somos, Jun 08 2000
D-finite with recurrence n*(n+1)*a(n) +n*(n+1)*a(n-1) +(n^2+n+12)*a(n-2) +(-29*n^2+85*n+78)*a(n-3) +2*(-13*n^2+56*n+33)*a(n-4) +12*(n+1)*(n-7)*a(n-5) +8*(5*n+3)*(n-8)*a(n-6)=0. - R. J. Mathar, Feb 25 2015