A025243 a(n) = a(1)*a(n-1) + a(2)*a(n-2) + ... + a(n-3)*a(3) for n >= 4, with initial terms 1, 2, 1, 1.
1, 2, 1, 1, 3, 6, 14, 33, 79, 194, 482, 1214, 3090, 7936, 20544, 53545, 140399, 370098, 980226, 2607242, 6961462, 18652112, 50133616, 135140598, 365254226, 989614976, 2687312752, 7312725944, 19938170096, 54460115308, 149007155356, 408341969073
Offset: 1
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..2192
- Paul Barry, Riordan Pseudo-Involutions, Continued Fractions and Somos 4 Sequences, arXiv:1807.05794 [math.CO], 2018.
- Paul Barry, Generalized Catalan recurrences, Riordan arrays, elliptic curves, and orthogonal polynomials, arXiv:1910.00875 [math.CO], 2019.
- Paul Barry, Elliptic Curves, Riordan arrays and Lattice Paths, arXiv:2507.16765 [math.CO], 2025. See p. 6.
- Aubrey Blecher, Charlotte Brennan, and Arnold Knopfmacher, Levels in bargraphs, Ars Mathematica Contemporanea, 9 (2015), 287-300.
Programs
-
Magma
a:=[1,2,1]; for n in [4..35] do Append(~a,&+[a[k]*a[n-k]:k in [1..n-3]] ); end for; a; // Marius A. Burtea, Jan 02 2020
-
Mathematica
CoefficientList[Series[(1 + x + 2 x^2 - Sqrt[1 - 2 x - 3 x^2 + 4 x^4]) / 2 / x, {x, 0, 40}], x] (* Vincenzo Librandi, Feb 15 2015 *)
-
PARI
a(n)=polcoeff((x+2*x^2-sqrt(1-2*x-3*x^2+4*x^4+x*O(x^n)))/2,n)
Formula
G.f.: (1 + x + 2*x^2 - sqrt(1 - 2*x - 3*x^2 + 4*x^4))/2. - Michael Somos, Jun 08 2000
D-finite with recurrence n*(n+1)*a(n) +n*(n+1)*a(n-1) +(n^2+n+12)*a(n-2) +(-29*n^2+85*n+78)*a(n-3) +2*(-13*n^2+56*n+33)*a(n-4) +12*(n+1)*(n-7)*a(n-5) +8*(5*n+3)*(n-8)*a(n-6)=0. - R. J. Mathar, Feb 25 2015
Comments