cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A025250 a(n) = a(1)*a(n-1) + a(2)*a(n-2) + ... + a(n-3)*a(3) for n >= 4, with initial terms 0, 1, 1, 0.

Original entry on oeis.org

0, 1, 1, 0, 1, 1, 1, 3, 3, 6, 11, 15, 31, 50, 85, 161, 267, 490, 883, 1548, 2863, 5127, 9307, 17116, 31021, 57123, 104963, 192699, 356643, 658034, 1218517, 2262079, 4196895, 7812028, 14549655, 27126118, 50671255, 94697293, 177220411, 332015747
Offset: 1

Views

Author

Keywords

Comments

Number of lattice paths from (0,0) to (n-3,0) that stay weakly in the first quadrant and such that each step is either U=(1,1),D=(2,-1), or H=(2,0). E.g. a(10)=6 because we have HHUD, HUDH, HUHD, UDHH, UHDH and UHHD. - Emeric Deutsch, Dec 23 2003
Hankel transform of a(n+2) is Somos-4 variant A050512. - Paul Barry, Jul 05 2009

Programs

  • GAP
    List([0..45], n-> Sum([0..n], k-> Binomial(k+1,n-2*k-1)*Binomial(n-k-2,k)/(k+1) )); # G. C. Greubel, Feb 23 2019
  • Haskell
    a025250 n = a025250_list !! (n-1)
    a025250_list = 0 : 1 : 1 : f 1 [1,1,0] where
       f k xs = x' : f (k+1) (x':xs) where
         x' = sum $ zipWith (*) a025250_list $ take k xs
    -- Reinhard Zumkeller, Nov 03 2011
    
  • Magma
    m:=45; R:=PowerSeriesRing(Rationals(), m); [0] cat Coefficients(R!( (1 +x^2 -Sqrt(1-2*x^2-4*x^3+x^4))/2 )); // G. C. Greubel, Feb 23 2019
    
  • Mathematica
    Rest[CoefficientList[Series[(1+x^2-Sqrt[1-2*x^2-4*x^3+x^4])/2, {x,0,40}],x]]  (* Harvey P. Dale, Apr 05 2011 *)
    Rest@CoefficientList[Series[x^2+ContinuedFractionK[-x^3,x^2-1,{k, 0, 40}],{x,0,40}], x] (* Benedict W. J. Irwin, Oct 13 2016 *)
  • Maxima
    a(n):=sum((binomial(k+1,n-2*k-1)*binomial(n-k-2,k))/(k+1),k,0,n); /* Vladimir Kruchinin, Nov 22 2014 */
    
  • PARI
    a(n)=polcoeff((x^2-sqrt(1-2*x^2-4*x^3+x^4+x*O(x^n)))/2,n)
    
  • Sage
    a=((1+x^2 -sqrt(1-2*x^2-4*x^3+x^4))/2).series(x, 45).coefficients(x, sparse=False); a[1:] # G. C. Greubel, Feb 23 2019
    

Formula

G.f.: (1 +x^2 -sqrt(1-2*x^2-4*x^3+x^4))/2. - Michael Somos, Jun 08 2000
G.f.: x^2+x^3*(1/(1-x^2))c(x^3/(1-x^2)^2) where c(x) is the g.f. of A000108. - Paul Barry, May 20 2009
a(n+2) = Sum_{k=0..n} binomial((n+k)/2, 2*k)*(1+(-1)^(n-k))*A000108(k)/2. - Paul Barry, Jul 06 2009
a(n) = Sum_{k=0..n} binomial(k+1,n-2*k-1)*binomial(n-k-2,k)/(k+1). - Vladimir Kruchinin, Nov 22 2014
G.f.: K_{k>=0} (-x^3)/(x^2-1), where K is the Gauss notation for a continued fraction. - Benedict W. J. Irwin, Oct 11 2016
a(n) ~ sqrt(1 - r^2 - r^3) * (2*r + 4*r^2 - r^3)^n / (2*sqrt(Pi)*n^(3/2)), where r = 0.51361982956383128341133963576515885989214886200017191578885... is the root of the equation 1 - 2*r^2 - 4*r^3 + r^4 = 0. - Vaclav Kotesovec, Jul 03 2021
Shifts left 3 places under the INVERT transform. - J. Conrad, Mar 08 2023