cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A025285 Numbers that are the sum of 2 nonzero squares in exactly 2 ways.

Original entry on oeis.org

50, 65, 85, 125, 130, 145, 170, 185, 200, 205, 221, 250, 260, 265, 290, 305, 338, 340, 365, 370, 377, 410, 442, 445, 450, 481, 485, 493, 500, 505, 520, 530, 533, 545, 565, 578, 580, 585, 610, 625, 629, 680, 685, 689, 697, 730, 740, 745, 754, 765, 785, 793, 800, 820
Offset: 1

Views

Author

Keywords

Comments

Order and signs don't count. E.g. 50 = 5^2+5^2 = 7^2+1^2 (= (-5)^2+5^2, but that doesn't count as different).
A131574 is a subsequence. - Zak Seidov, Jan 31 2014
A025426(a(n)) = 2. - Reinhard Zumkeller, Feb 26 2015

Crossrefs

Programs

  • Haskell
    a025285 n = a025285_list !! (n-1)
    a025285_list = filter ((== 2) . a025426) [1..]
    -- Reinhard Zumkeller, Feb 26 2015
    
  • Mathematica
    selQ[n_] := Length[ Select[ PowersRepresentations[n, 2, 2], Times @@ # != 0 &]] == 2; Select[Range[1000], selQ] (* Jean-François Alcover, Oct 03 2013 *)
  • PARI
    is(n)=sum(k=sqrtint((n-1)\2)+1,sqrtint(n-1), issquare(n-k^2))==2 \\ Charles R Greathouse IV, May 24 2016
    
  • PARI
    is(n)=my(v=valuation(n, 2), f=factor(n>>v), t=1); for(i=1, #f[, 1], if(f[i, 1]%4==1, t*=f[i, 2]+1, if(f[i, 2]%2, return(0)))); if(t%2, t-(-1)^v, t)==4 \\ Charles R Greathouse IV, May 24 2016

Formula

a(n) >= A007692(n) with equality only for n <= 16. - Alois P. Heinz, Mar 23 2023

A025299 Numbers that are the sum of 2 nonzero squares in 8 or more ways.

Original entry on oeis.org

27625, 32045, 40885, 45305, 47125, 55250, 58565, 60125, 61625, 64090, 66625, 67405, 69745, 71825, 77285, 78625, 80665, 81770, 86125, 87125, 90610, 91205, 93925, 94250, 98345, 98605, 99125, 99905, 101065, 107185, 110500, 111605, 112625, 114985
Offset: 1

Views

Author

Keywords

Examples

			27625 is in the sequence via 20^2 + 165^2 = 27^2 + 164^2 = 45^2 + 160^2 = 60^2 + 155^2 = 83^2 + 144^2 = 88^2 + 141^2 = 101^2 + 132^2 = 115^2 + 120^2. - _David A. Corneth_, Jun 01 2025
		

Crossrefs

Programs

  • Mathematica
    nn = 114985; t = Table[0, {nn}]; lim = Floor[Sqrt[nn - 1]]; Do[num = i^2 + j^2; If[num <= nn, t[[num]]++], {i, lim}, {j, i}]; Flatten[Position[t, ?(# >= 8 &)]] (* _T. D. Noe, Apr 07 2011 *)
  • PARI
    upto(n) = {my(v = vector(n)); for(i = 1, sqrtint(n), i2 = i^2; for(j = i, sqrtint(n - i^2), v[i2 + j^2]++)); select(x->x >= 8, v, 1)} \\ David A. Corneth, Jun 01 2025

A025309 Numbers that are the sum of 2 distinct nonzero squares in exactly 8 ways.

Original entry on oeis.org

27625, 32045, 40885, 45305, 47125, 55250, 58565, 60125, 61625, 64090, 66625, 67405, 69745, 77285, 78625, 80665, 81770, 86125, 87125, 90610, 91205, 94250, 98345, 98605, 99125, 99905, 101065, 107185, 110500, 111605, 112625, 114985, 117130, 118625
Offset: 1

Views

Author

Keywords

Comments

Starts to differ from A025291 at a(95). - R. J. Mathar, Jul 06 2025

Programs

  • Mathematica
    nn = 118625; t = Table[0, {nn}]; lim = Floor[Sqrt[nn - 1]]; Do[num = i^2 + j^2; If[num <= nn, t[[num]]++], {i, lim}, {j, i - 1}]; Flatten[Position[t, 8]] (* T. D. Noe, Apr 07 2011 *)
Showing 1-3 of 3 results.