cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A025443 Number of partitions of n into 4 distinct nonzero squares.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 3, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 2, 1, 0, 1, 2, 2, 0, 0, 1, 2, 0, 0, 3, 0, 0, 2, 1, 1
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A025428 (not necessarily distinct), A025376-A025394 (subsequences), A025417 (greedy inverse).
Column k=4 of A341040.

Programs

  • Maple
    b:= proc(n,i,t) option remember; `if`(n=0, `if`(t=0,1,0),
          `if`(t*i^2n, 0, b(n-i^2,i-1,t-1))))
        end:
    a:= n-> b(n, isqrt(n), 4):
    seq(a(n), n=0..150);  # Alois P. Heinz, Feb 07 2013
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n==0, If[t==0, 1, 0], If[t*i^2n, 0, b[n-i^2, i-1, t-1]]]]; a[n_] := b[n, Sqrt[n] // Floor, 4]; Table[a[n], {n, 0, 150}] (* Jean-François Alcover, Feb 29 2016, after Alois P. Heinz*)
    dnzs[n_]:=Length[Select[IntegerPartitions[n,{4}],Length[Union[#]]==4&&AllTrue[ Sqrt[ #], IntegerQ] && FreeQ[#,0]&]]; Array[dnzs,110,0] (* Harvey P. Dale, Jun 09 2024 *)

Formula

a(n) = [x^n y^4] Product_{k>=1} (1 + y*x^(k^2)). - Ilya Gutkovskiy, Apr 22 2019

A004433 Numbers that are the sum of 4 distinct nonzero squares: of form w^2+x^2+y^2+z^2 with 0

Original entry on oeis.org

30, 39, 46, 50, 51, 54, 57, 62, 63, 65, 66, 70, 71, 74, 75, 78, 79, 81, 84, 85, 86, 87, 90, 91, 93, 94, 95, 98, 99, 102, 105, 106, 107, 109, 110, 111, 113, 114, 116, 117, 118, 119, 120, 121, 122, 123, 125, 126, 127, 129, 130, 131, 133, 134, 135, 137
Offset: 1

Views

Author

Keywords

Examples

			30 = 1^2+2^2+3^2+4^2.
		

Crossrefs

Programs

  • Haskell
    a004433 n = a004433_list !! (n-1)
    a004433_list = filter (p 4 $ tail a000290_list) [1..] where
       p k (q:qs) m = k == 0 && m == 0 ||
                      q <= m && k >= 0 && (p (k - 1) qs (m - q) || p k qs m)
    -- Reinhard Zumkeller, Apr 22 2013
    
  • Mathematica
    data = Flatten[ DeleteCases[ FindInstance[ w^2 + x^2 + y^2 + z^2 == # && 0 < w < x < y < z < #, {w, x, y, z}, Integers] & /@ Range[137], {}], 1]; w^2 + x^2 + y^2 + z^2 /. data (* Ant King, Oct 17 2010 *)
    Select[Union[Total[#^2]&/@Subsets[Range[10],{4}]],#<=137&] (* Harvey P. Dale, Jul 03 2011 *)
  • PARI
    list(lim)=my(v=List([30, 39, 46, 50, 51, 54, 57, 62, 63, 65, 66, 70, 71, 74, 75, 78, 79, 81, 84, 85, 86, 87, 90, 91, 93, 94, 95, 98, 99, 102, 105, 106, 107, 109, 110, 111, 113, 114, 116, 117, 118, 119, 120, 121, 122, 123, 125, 126, 127, 129, 130, 131, 133, 134, 135, 137, 138, 139, 140, 141, 142, 143, 145, 146, 147, 149, 150, 151, 153, 154, 155, 156]), u=[160, 168, 172, 176, 188, 192, 208, 220, 224, 232, 240, 256, 268, 272, 288, 292, 304, 320, 328, 352, 368, 384, 388, 400, 412, 416, 432, 448, 496, 512, 528, 544, 576, 592, 608], t=1); if(lim<156, return(select(k->k<=lim, Vec(v)))); for(n=158,lim\1, if(n#u, t=1)); Vec(v) \\ Charles R Greathouse IV, Jan 08 2025

Formula

{n: A025443(n) >=1}. Union of A025386 and A025376. - R. J. Mathar, Jun 15 2018
a(n) = n + O(log n). - Charles R Greathouse IV, Jan 08 2025

A025386 Numbers that are the sum of 4 distinct nonzero squares in 2 or more ways.

Original entry on oeis.org

78, 90, 94, 95, 99, 102, 105, 110, 111, 114, 119, 123, 126, 129, 130, 134, 135, 138, 141, 142, 143, 146, 147, 150, 151, 153, 154, 155, 156, 158, 159, 162, 165, 166, 167, 169, 170, 171, 174, 175, 177, 179, 182, 183, 185, 186, 189, 190, 191, 193, 194, 195, 197, 198, 199
Offset: 1

Views

Author

Keywords

Formula

{n: A025443(n) >= 2}. Union of A025387 and A025376. - R. J. Mathar, Jun 15 2018
Showing 1-3 of 3 results.