A025475 1 and the prime powers p^m where m >= 2, thus excluding the primes.
1, 4, 8, 9, 16, 25, 27, 32, 49, 64, 81, 121, 125, 128, 169, 243, 256, 289, 343, 361, 512, 529, 625, 729, 841, 961, 1024, 1331, 1369, 1681, 1849, 2048, 2187, 2197, 2209, 2401, 2809, 3125, 3481, 3721, 4096, 4489, 4913, 5041, 5329, 6241, 6561, 6859, 6889, 7921, 8192
Offset: 1
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- Romeo Meštrović, Generalizations of Carmichael numbers I, arXiv:1305.1867v1 [math.NT], May 4, 2013.
- Preda Mihăilescu, On Catalan's Conjecture, Kuwait Foundation Lecture 30 - April 28, 2003.
- Eric Weisstein's World of Mathematics, Prime Power.
Crossrefs
Subsequence of A000961. - Reinhard Zumkeller, Jun 22 2011
Differences give A053707.
Cf. A076048 (number of terms < 10^n).
There are four different sequences which may legitimately be called "prime powers": A000961 (p^k, k >= 0), A246655 (p^k, k >= 1), A246547 (p^k, k >= 2), A025475 (p^k, k=0 and k >= 2). When you refer to "prime powers", be sure to specify which of these you mean. Also A001597 is the sequence of nontrivial powers n^k, n >= 1, k >= 2. - N. J. A. Sloane, Mar 24 2018
Programs
-
Haskell
a025475 n = a025475_list !! (n-1) a025475_list = filter ((== 0) . a010051) a000961_list -- Reinhard Zumkeller, Jun 22 2011
-
Maple
isA025475 := proc(n) if n < 1 then false; elif n = 1 then true; elif isprime(n) then false; elif nops(numtheory[factorset](n)) = 1 then true; else false; end if; end proc: A025475 := proc(n) option remember; local a; if n = 1 then 1; else for a from procname(n-1)+1 do if isA025475(a) then return a; end if; end do: end if; end proc: # R. J. Mathar, Jun 06 2013 # alternative: N:= 10^5: # to get all terms <= N Primes:= select(isprime, [2,(2*i+1 $ i = 1 .. floor((sqrt(N)-1)/2))]): sort([1,seq(seq(p^i, i=2..floor(log[p](N))),p=Primes)]); # Robert Israel, Jul 27 2015
-
Mathematica
A025475 = Select[ Range[ 2, 10000 ], ! PrimeQ[ # ] && Mod[ #, # - EulerPhi[ # ] ] == 0 & ] A025475 = Sort[ Flatten[ Table[ Prime[n]^i, {n, 1, PrimePi[ Sqrt[10^4]]}, {i, 2, Log[ Prime[n], 10^4]}]]] {1}~Join~Select[Range[10^4], And[! PrimeQ@ #, PrimePowerQ@ #] &] (* Michael De Vlieger, Jul 04 2016 *) Join[{1},Select[Range[100000],PrimePowerQ[#]&&!PrimeQ[#]&]] (* Harvey P. Dale, Oct 29 2023 *)
-
PARI
for(n=1,10000,if(sigma(n)*eulerphi(n)*(1-isprime(n))>(n-1)^2,print1(n,",")))
-
PARI
is_A025475(n)={ ispower(n,,&p) && isprime(p) || n==1 } \\ M. F. Hasler, Sep 25 2011
-
PARI
list(lim)=my(v=List([1]),L=log(lim+.5));forprime(p=2,(lim+.5)^(1/3),for(e=3,L\log(p),listput(v,p^e))); vecsort(concat(Vec(v), apply(n->n^2,primes(primepi(sqrtint(lim\1)))))) \\ Charles R Greathouse IV, Nov 12 2012
-
PARI
list(lim)=my(v=List([1])); for(m=2,logint(lim\=1,2), forprime(p=2,sqrtnint(lim,m), listput(v, p^m))); Set(v) \\ Charles R Greathouse IV, Aug 26 2015
-
Python
from sympy import primerange A025475_list, m = [1], 10*2 m2 = m**2 for p in primerange(1,m): a = p**2 while a < m2: A025475_list.append(a) a *= p A025475_list = sorted(A025475_list) # Chai Wah Wu, Sep 08 2014
-
Python
from sympy import primepi, integer_nthroot def A025475(n): if n==1: return 1 def f(x): return int(n-2+x-sum(primepi(integer_nthroot(x,k)[0]) for k in range(2,x.bit_length()))) kmin, kmax = 1,2 while f(kmax) >= kmax: kmax <<= 1 while True: kmid = kmax+kmin>>1 if f(kmid) < kmid: kmax = kmid else: kmin = kmid if kmax-kmin <= 1: break return kmax # Chai Wah Wu, Aug 13 2024
Formula
The number of terms <= N is O(sqrt(N)*log N). [See Weisstein link] - N. J. A. Sloane, May 27 2022
A192280(a(n)) = 0 for n > 1. - Reinhard Zumkeller, Aug 26 2011
From Hieronymus Fischer, May 31 2013: (Start)
The greatest number n such that a(n) <= m is given by 1 + Sum_{k>=2} A000720(floor(m^(1/k))).
Example 1: m = 10^10 ==> n = 10085;
Example 2: m = 10^11 ==> n = 28157;
Example 3: m = 10^12 ==> n = 80071;
Example 4: m = 10^15 ==> n = 1962690. (End)
Sum_{n>=2} 1/a(n) = Sum_{p prime} 1/(p*(p-1)) = A136141. - Amiram Eldar, Oct 11 2020
From Amiram Eldar, Jan 28 2021: (Start)
Product_{n>=2} (1 + 1/a(n)) = Product_{k>=2} zeta(k)/zeta(2*k) = 2.0729553047...
Product_{n>=2} (1 - 1/a(n)) = A068982. (End)
Extensions
Edited by Daniel Forgues, Aug 18 2009
Comments