cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026002 a(n) = T(n,n+2), where T = Delannoy triangle (A008288).

Original entry on oeis.org

1, 7, 41, 231, 1289, 7183, 40081, 224143, 1256465, 7059735, 39753273, 224298231, 1267854873, 7178461215, 40704778785, 231128079903, 1314016698401, 7478998203943, 42612705597769, 243025194476551, 1387226559025961, 7924982285747247, 45308321651001521
Offset: 1

Views

Author

Keywords

Comments

Number of U steps in all lattice paths from (0,0) to (2n,0) consisting of steps U=(1,1), D=(1,-1), H=(2,0) and never going below the x-axis (i.e., Schroeder paths). For example, a(2)=7, counting the U's in HH, UDUD, UUDD, UHD, HUD and UDH. - Emeric Deutsch, Dec 06 2003
Number of UH's in all lattice paths from (0,0) to (2n+2,0) consisting of steps U=(1,1), D=(1,-1), H=(2,0) and never going below the x-axis (i.e., Schroeder paths). For example, a(2)=7, counting the UH's, shown between parentheses, in the 22 (=A006318(3)) Schroeder paths of length 6: HHH, HHUD, HUDH, HUDUD, H(UH)D, HUUDD, (UH)DH, (UH)DUD, UUDDH, UUDDUD, (UH)HD, (UH)UDD, UUDHD, UUDUDD, U(UH)DD, UUUDDD, UDHH, UDHUD, UDUDH, UDUDUD, UD(UH)D and UDUUDD. - Emeric Deutsch, Jul 16 2005
Number of walks from (0,0) to (n+2,n) using steps from {E,N,NE}. - Shanzhen Gao, May 25 2011
Conjecture: define an infinite array to have m(n,1) = m(1,n) = n*(n-1)+1 in the first row and column, and m(i,j) = m(i,j-1) + m(i-1,j-1) + m(i-1,j); then m(n,n) = a(n). - J. M. Bergot, Apr 24 2013
+-2-diagonal of A008288 as a square array. - Shel Kaphan, Jan 07 2023

Crossrefs

Programs

  • GAP
    List([1..25], n-> (1/n)*Sum([0..n], k-> k*Binomial(n,k)*Binomial(n+k,k+1) )); # G. C. Greubel, Feb 13 2020
  • Magma
    [(1/n)*(&+[k*Binomial(n, k)*Binomial(n+k, k+1): k in [0..n]]): n in [1..25]]; // G. C. Greubel, Feb 13 2020
    
  • Maple
    a:=n->(1/n)*sum(k*binomial(n,k)*binomial(n+k,k+1),k=0..n): seq(a(n),n=1..25); # Emeric Deutsch
  • Mathematica
    Table[SeriesCoefficient[1/2-1/(2*x)+(1-4*x+x^2)/(2*x*Sqrt[1-6*x+x^2]),{x,0,n}],{n,1,25}] (* Vaclav Kotesovec, Oct 08 2012 *)
    a[n_] := Binomial[2*n, n+1]*Hypergeometric2F1[-n+1, -n-1, -2*n, -1]; Flatten[Table[a[n], {n, 1, 22}]] (* Detlef Meya, Dec 26 2023 *)
  • PARI
    my(x='x+O('x^66)); Vec( 1/2-1/(2*x)+(1-4*x+x^2)/(2*x*sqrt(1-6*x+x^2)) ) \\ Joerg Arndt, May 04 2013
    
  • Sage
    a = lambda n: hypergeometric([-n-1, -n+1], [1], 2)
    [simplify(a(n)) for n in (1..25)] # Peter Luschny, Nov 19 2014
    

Formula

From Emeric Deutsch, Dec 06 2003: (Start)
a(n) = (1/n)*Sum_{k=0..n} k*binomial(n, k)*binomial(n+k, k+1).
G.f.: 1/2 - 1/(2*z) + (1-4*z+z^2)/(2*z*sqrt(1-6*z+z^2)). (End)
a(n) = Sum_{k=0..floor(n/2)} k*A110220(n, k). - Emeric Deutsch, Jul 16 2005
a(n) = Sum_{k=0..n} C(n, k)*C(n+2, k)*2^k. - Paul Barry, Jan 23 2006
a(n) = Jacobi_P(n, 2, 0, 3). - Paul Barry, Jan 23 2006
a(n) = (-1)^n*((2*n-1)*LegendreP(n,-3)-LegendreP(n-1,-3))/(2*n+2). - Mark van Hoeij, Oct 31 2011
Recurrence: (n+1)*(6*n-7)*a(n) = (36*n^2-23*n+7)*a(n-1) - (6*n^2-n-21)*a(n-2) + (n-3)*a(n-3). - Vaclav Kotesovec, Oct 08 2012
a(n) ~ sqrt(8+6*sqrt(2))*(3+2*sqrt(2))^n/(4*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 08 2012
a(n) = hypergeom([-n-1, -n+1], [1], 2). - Peter Luschny, Nov 19 2014
From Peter Bala, Mar 02 2017: (Start)
a(n+1) = 1/2^(n+1) * Sum_{k >= 2} 1/2^k * binomial(n + k, n)*binomial(n + k, n + 2).
(n+1)*(n-1)^2*a(n) = (2*n-1)*(3*n^2 -3*n +1)*a(n-1) - (n-2)*n^2*a(n-2) with a(1) = 1 and a(2) = 7. (End)
a(n) = A001850(n) - A006318(n). - Matthew Niemiro, Jan 31 2020
a(n) = binomial(2*n, n+1)*hypergeom([-n+1, -n-1], [-2*n], -1). - Detlef Meya, Dec 26 2023