A026039 a(n) = (d(n) - r(n))/5, where d = A026037 and r is the periodic sequence with fundamental period (1,2,0,2,0).
2, 4, 8, 13, 21, 31, 44, 61, 81, 106, 135, 169, 209, 254, 306, 364, 429, 502, 582, 671, 768, 874, 990, 1115, 1251, 1397, 1554, 1723, 1903, 2096, 2301, 2519, 2751, 2996, 3256, 3530, 3819, 4124, 4444, 4781, 5134, 5504, 5892, 6297, 6721, 7163, 7624, 8105, 8605, 9126, 9667, 10229, 10813, 11418, 12046, 12696, 13369
Offset: 3
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 3..10000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1,0,1,-3,3,-1).
Crossrefs
Cf. A026037.
Programs
-
Magma
[Round((2*n-1)*(n^2-n+6)/30): n in [3..60]]; // Vincenzo Librandi, Jun 25 2011
-
Mathematica
f[n_] := Round[(2 n - 1)*(n^2 - n + 6)/30]; Array[f, 57, 3] LinearRecurrence[{3,-3,1,0,1,-3,3,-1},{2,4,8,13,21,31,44,61},60] (* Harvey P. Dale, Sep 05 2023 *)
Formula
a(n) = (n + 3)*(2*n^2 + 9*n + 22)/30 - 1/5 - (-1/25*((5 - 5^(1/2))^(1/2) - (5 + 5^(1/2))^(1/2))*2^(1/2))*sin(2*n*Pi/5) - (1/25*((5 - 5^(1/2))^(1/2) + (5 + 5^(1/2))^(1/2))*2^(1/2))*sin(4*n*Pi/5). - Richard Choulet, Dec 14 2008
a(n) = round((2*n-1)*(n^2-n+6)/30) = floor((2*n^3-3*n^2+13*n)/30) = ceiling((n-1)*(2*n^2-n+12)/30) = round((n-1)*(2*n^2-n+12)/30). - Mircea Merca, Dec 03 2010
From R. J. Mathar, May 24 2010: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + a(n-5) - 3*a(n-6) + 3*a(n-7) - a(n-8).
G.f.: -x^3*(-2+2*x-2*x^2+x^3-2*x^4+3*x^5-3*x^6+x^7) / ( (x^4+x^3+x^2+x+1)*(x-1)^4 ). (End)
a(n) = a(n-5) + n^2 - 6*n + 13, n > 5, a(1)=0, a(2)=1. - Mircea Merca, Dec 03 2010
Comments