cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A025566 a(n) = number of (s(0), s(1), ..., s(n)) such that every s(i) is a nonnegative integer, s(0) = 0, s(1) = 1, |s(i) - s(i-1)| <= 1 for i >= 2. Also a(n) = sum of numbers in row n+1 of the array T defined in A026105. Also a(n) = T(n,n), where T is the array defined in A025564.

Original entry on oeis.org

1, 1, 1, 3, 8, 22, 61, 171, 483, 1373, 3923, 11257, 32418, 93644, 271219, 787333, 2290200, 6673662, 19478091, 56930961, 166613280, 488176938, 1431878079, 4203938697, 12353600427, 36331804089, 106932444885, 314946659951, 928213563878
Offset: 0

Views

Author

Keywords

Comments

a(n+1) is the number of Motzkin (2n)-paths whose last weak valley occurs immediately after step n. A weak valley in a Motzkin path (A001006) is an interior vertex whose following step has nonnegative slope and whose preceding step has nonpositive slope. For example, the weak valleys in the Motzkin path F.UF.FD.UD occur after the first, third and fifth steps as indicated by the dots (U=upstep of slope 1, D=downstep of slope -1, F=flatstep of slope 0) and, with n=2, a(3)=3 counts FFUD, UDUD, UFFD. - David Callan, Jun 07 2006
Starting with offset 2: (1, 3, 8, 22, 61, 171, 483, ...), = row sums of triangle A136537. - Gary W. Adamson, Jan 04 2008

Crossrefs

First differences of A026135. Row sums of triangle A026105.
Pairwise sums of A005727. Column k=2 in A115990.
Cf. A136537.

Programs

  • GAP
    List([0..30],i->Sum([0..Int(i/2)],k->Binomial(i-2,k)*Binomial(i-k,k))); # Muniru A Asiru, Mar 09 2019
  • Maple
    seq( sum('binomial(i-2,k)*binomial(i-k,k)', 'k'=0..floor(i/2)), i=0..30 ); # Detlef Pauly (dettodet(AT)yahoo.de), Nov 09 2001
  • Mathematica
    CoefficientList[Series[x+(2x(x-1))/(1-3x-Sqrt[1-2x-3x^2]),{x,0,30}],x] (* Harvey P. Dale, Jun 12 2016 *)

Formula

G.f.: x + 2*x*(x-1)/(1-3x-sqrt(1-2x-3x^2)); for n > 1, first differences of the "directed animals" sequence A005773: a(n) = A005773(n) - A005773(n-1). - Emeric Deutsch, Aug 16 2002
Starting (1, 3, 8, 22, 61, 171, ...) gives the inverse binomial transform of A001791 starting (1, 4, 15, 56, 210, 792, ...). - Gary W. Adamson, Sep 01 2007
a(n) is the sum of the (n-2)-th row of triangle A131816. - Gary W. Adamson, Sep 01 2007
D-finite with recurrence n*a(n) +(-3*n+2)*a(n-1) +(-n+2)*a(n-2) +3*(n-4)*a(n-3)=0. - R. J. Mathar, Sep 15 2020

A026109 a(n) = number of (s(0), s(1), ..., s(n)) such that every s(i) is a nonnegative integer, s(0) = 0, s(1) = 1, s(n) = 3, |s(i) - s(i-1)| <= 1 for i >= 2. Also a(n) = T(n,n-3), where T is the array defined in A026105.

Original entry on oeis.org

1, 3, 10, 30, 89, 259, 748, 2148, 6150, 17578, 50204, 143364, 409500, 1170300, 3346944, 9579840, 27444681, 78698475, 225887010, 648985414, 1866356437, 5372348487, 15478733108, 44637360700, 128837626255, 372183158061, 1076041247778
Offset: 3

Views

Author

Keywords

Crossrefs

First differences of A005323. Cf. A026124.

Formula

G.f.: z(1-z)M^4, with M the g.f. of the Motzkin numbers (A001006).
Conjecture: (n+5)*a(n) +5*(-n-3)*a(n-1) +4*n*a(n-2) +8*n*a(n-3) +(-5*n+19)*a(n-4) +3*(-n+5)*a(n-5)=0. - R. J. Mathar, Jun 23 2013

A026110 a(n) = number of (s(0), s(1), ..., s(n)) such that every s(i) is a nonnegative integer, s(0) = 0, s(1) = 1, s(n) = 4, |s(i) - s(i-1)| <= 1 for i >= 2. Also a(n) = T(n,n-4), where T is the array defined in A026105.

Original entry on oeis.org

1, 4, 15, 50, 160, 496, 1509, 4530, 13475, 39820, 117117, 343278, 1003665, 2929200, 8537910, 24863724, 72363951, 210532540, 612398025, 1781252110, 5181318054, 15073505216, 43860668800, 127657036000, 371654416575, 1082359229796
Offset: 4

Views

Author

Keywords

Comments

Apparently the Motzkin transform of the 6th row of A025117, i.e., of 1, 4, 11, 20, ..., 11, 4, 1 followed by zeros. - R. J. Mathar, Dec 11 2008

Crossrefs

First differences of A005324. Cf. A001006, A026125.

Formula

G.f.: z(1-z)M^5, with M the g.f. of the Motzkin numbers (A001006).
Conjecture: -(n+6)*(n-4)*a(n) +(4*n^2-n-51)*a(n-1) +(-2*n^2+11*n+18)*a(n-2) -(4*n-1)*(n-3)*a(n-3) +3*(n-3)*(n-4)*a(n-4)=0. - R. J. Mathar, Jun 23 2013

A026112 a(n) = T(2n,n), where T is the array defined in A026105.

Original entry on oeis.org

1, 1, 6, 30, 160, 873, 4851, 27300, 155115, 887910, 5112767, 29582886, 171857127, 1001762125, 5856231825, 34320863160, 201579530004, 1186231850298, 6992515244280, 41281814341780, 244049819182260, 1444558452300909, 8560106124666867, 50777065370076660
Offset: 0

Views

Author

Keywords

Crossrefs

Bisection of A026117.

Extensions

More terms from Alois P. Heinz, Sep 16 2019

A026117 T(n,[ n/2 ]), where T is the array defined in A026105.

Original entry on oeis.org

1, 1, 1, 2, 6, 10, 30, 50, 160, 265, 873, 1442, 4851, 7996, 27300, 44928, 155115, 254950, 887910, 1457852, 5112767, 8387170, 29582886, 48492028, 171857127, 281521541, 1001762125, 1640055250, 5856231825, 9582770760, 34320863160, 56135075250
Offset: 0

Views

Author

Keywords

A026111 a(n) = T(2n-1,n), where T is the array defined in A026105.

Original entry on oeis.org

3, 16, 89, 496, 2795, 15884, 90909, 523312, 3026850, 17577660, 102425257, 598575368, 3506930635, 20591787300, 121145018325, 713948286528, 4214030403902, 24907512574608, 147403116947718
Offset: 2

Views

Author

Keywords

A026113 T(3n,n), where T is the array defined in A026105.

Original entry on oeis.org

1, 2, 15, 112, 879, 7084, 58123, 482980, 4051542, 34236670, 291001515, 2485209984, 21308128100, 183304844334, 1581390987039, 13676468811804, 118533903449357, 1029280548493050, 8952719328878815, 77988115665259800, 680280714418808610, 5941248392350208706
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A026105.

Extensions

a(13) corrected and more terms from Sean A. Irvine, Sep 16 2019

A026114 T(4n,n), where T is the array defined in A026105.

Original entry on oeis.org

1, 3, 28, 275, 2834, 30020, 323817, 3537963, 39025125, 433641593, 4846850372, 54432520983, 613727606977, 6942918090500, 78767492060334, 895824168454107, 10210180642895226, 116591635975080084, 1333619552180129775, 15277391011739272885, 175247987032943618365
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A026105.

Extensions

More terms and offset corrected by Sean A. Irvine, Sep 16 2019

A026115 a(n) = T(2n,n-1), where T is the array defined in A026105.

Original entry on oeis.org

1, 3, 15, 77, 413, 2266, 12636, 71290, 405790, 2325923, 13406666, 77632590, 451270925, 2631763500, 15391191315, 90230338449, 530098757210, 3120158068370, 18395925762046, 108621483748778, 642235028537889, 3801900814767378, 22531392119093175, 133663824177577317
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A026105.

Extensions

More terms from Sean A. Irvine, Sep 16 2019

A026116 T(2n,n+1), where T is the array defined in A026105.

Original entry on oeis.org

1, 7, 44, 259, 1509, 8767, 50973, 296907, 1733150, 10138970, 59435705, 349085651, 2053897585, 12103791975, 71432963850, 422138418075, 2497699796394, 14794839261958, 87725376843892, 520654743222562, 3092804089136541, 18386738886807495, 109390940367285906, 651267699186002859
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A026105.

Extensions

More terms from Sean A. Irvine, Sep 16 2019
Showing 1-10 of 15 results. Next