A110165
Riordan array (1/sqrt(1-6x+5x^2),(1-3x-sqrt(1-6x+5x^2))/(2x)).
Original entry on oeis.org
1, 3, 1, 11, 6, 1, 45, 30, 9, 1, 195, 144, 58, 12, 1, 873, 685, 330, 95, 15, 1, 3989, 3258, 1770, 630, 141, 18, 1, 18483, 15533, 9198, 3801, 1071, 196, 21, 1, 86515, 74280, 46928, 21672, 7210, 1680, 260, 24, 1, 408105, 356283, 236736, 119154, 44982, 12510, 2484, 333, 27, 1
Offset: 0
Rows begin
1;
3, 1;
11, 6, 1;
45, 30, 9, 1;
195, 144, 58, 12, 1;
873, 685, 330, 95, 15, 1;
Production array begins:
3, 1;
2, 3, 1;
0, 1, 3, 1;
0, 0, 1, 3, 1;
0, 0, 0, 1, 3, 1;
0, 0, 0, 0, 1, 3, 1;
0, 0, 0, 0, 0, 1, 3, 1;
... - _Philippe Deléham_, Feb 08 2014
-
seq(seq( coeff((x^2 + 3*x + 1)^n, x, n-k), k = 0..n ), n = 0..10); # Peter Bala, Jan 09 2022
-
(* The function RiordanArray is defined in A256893. *)
RiordanArray[1/Sqrt[1-6#+5#^2]&, (1-3#-Sqrt[1-6#+5#^2])/(2#)&, 10] // Flatten (* Jean-François Alcover, Jul 19 2019 *)
A387237
Expansion of 1/((1-x) * (1-5*x))^(5/2).
Original entry on oeis.org
1, 15, 145, 1155, 8260, 55188, 351960, 2170080, 13042095, 76827465, 445335891, 2547479025, 14412134100, 80773641900, 449065521300, 2479190589180, 13603361708775, 74238475926825, 403197150223175, 2180369322394725, 11744998515662720, 63044308615576200, 337323759106291100
Offset: 0
-
R := PowerSeriesRing(Rationals(), 34); f := 1/((1-x) * (1-5*x))^(5/2); coeffs := [ Coefficient(f, n) : n in [0..33] ]; coeffs; // Vincenzo Librandi, Aug 24 2025
-
CoefficientList[Series[1/((1-x)*(1-5*x))^(5/2),{x,0,33}],x] (* Vincenzo Librandi, Aug 24 2025 *)
-
my(N=30, x='x+O('x^N)); Vec(1/((1-x)*(1-5*x))^(5/2))
A387239
a(n) = Sum_{k=0..n} binomial(n+3,k+3) * binomial(2*k+6,k+6).
Original entry on oeis.org
1, 12, 95, 630, 3801, 21672, 119154, 639180, 3369795, 17543196, 90476100, 463291920, 2359240975, 11961944400, 60440659640, 304543085040, 1531044995355, 7682898791700, 38494752520175, 192632866196694, 962948703201331, 4809438625979592, 24002988378037350, 119719958370912900
Offset: 0
-
[&+[Binomial(n+3,k+3) * Binomial(2*k+6,k+6): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Aug 24 2025
-
Table[Sum[Binomial[n+3,k+3]* Binomial[2*k+6, k+6],{k,0,n}],{n,0,25}] (* Vincenzo Librandi, Aug 24 2025 *)
-
a(n) = sum(k=0, n, binomial(n+3, k+3)*binomial(2*k+6, k+6));
A128727
Triangle read by rows: T(n,k) is the number of skew Dyck paths of semilength n having k DDU and LDU's.
Original entry on oeis.org
1, 1, 3, 9, 1, 27, 9, 81, 54, 2, 243, 270, 30, 729, 1215, 270, 5, 2187, 5103, 1890, 105, 6561, 20412, 11340, 1260, 14, 19683, 78732, 61236, 11340, 378, 59049, 295245, 306180, 85050, 5670, 42, 177147, 1082565, 1443420, 561330, 62370, 1386, 531441
Offset: 0
T(5,2)=2 because we have UU(DDU)U(DDU)D and UUU(DDU)(DDU)D (the 2 subwords are shown between parentheses).
Triangle starts:
1;
1;
3;
9, 1;
27, 9;
81, 54, 2;
243, 270, 30;
729, 1215, 270, 5;
- E. Deutsch, E. Munarini, S. Rinaldi, Skew Dyck paths, J. Stat. Plann. Infer. 140 (8) (2010) 2191-2203
-
T:=(n,k)->3^(n-1-2*k)*binomial(n,k)*binomial(n-k,k+1)/n: 1; for n from 1 to 13 do seq(T(n,k),k=0..floor((n-1)/2)) od; # yields sequence in triangular form
Showing 1-4 of 4 results.
Comments