A026567
a(n) = Sum_{i=0..2*n} Sum_{j=0..i} T(i, j), where T is given by A026552.
Original entry on oeis.org
1, 4, 13, 31, 85, 193, 517, 1165, 3109, 6997, 18661, 41989, 111973, 251941, 671845, 1511653, 4031077, 9069925, 24186469, 54419557, 145118821, 326517349, 870712933, 1959104101, 5224277605, 11754624613, 31345665637, 70527747685
Offset: 0
Cf.
A026552,
A026553,
A026554,
A026555,
A026556,
A026557,
A026558,
A026559,
A026560,
A026563,
A026564,
A026566,
A027272,
A027273,
A027274,
A027275,
A027276.
-
[Truncate((2*(1+(-1)^n)*6^((n+2)/2) + 27*(1-(-1)^n)*6^((n-1)/2) -14)/10): n in [0..40]]; // G. C. Greubel, Dec 19 2021
-
CoefficientList[Series[(1 +3x +3x^2)/((1-x)(1-6x^2)), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 25 2014 *)
LinearRecurrence[{1,6,-6},{1,4,13},30] (* Harvey P. Dale, Aug 23 2014 *)
-
[(1/10)*(2*(1+(-1)^n)*6^((n+2)/2) +27*(1-(-1)^n)*6^((n-1)/2) -14) for n in (0..40)] # G. C. Greubel, Dec 19 2021
A026566
a(n) = Sum{T(i,j)}, 0<=j<=i, 0<=i<=n, T given by A026552.
Original entry on oeis.org
1, 3, 9, 20, 53, 117, 308, 684, 1806, 4028, 10664, 23844, 63239, 141612, 376026, 842866, 2239900, 5024166, 13359408, 29980384, 79753402, 179044760, 476451644, 1069936084, 2847931619, 6396900694, 17030741437, 38260956765
Offset: 0
Cf.
A026552,
A026553,
A026554,
A026555,
A026556,
A026557,
A026558,
A026559,
A026560,
A026563,
A026564,
A026567,
A027272,
A027273,
A027274,
A027275,
A027276.
-
T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[(n+2)/2], If[EvenQ[n], T[n-1, k-2] + T[n-1, k] + T[n-1, k-1], T[n-1, k-2] + T[n-1, k]]]]; (* T=A026552 *)
a[n_]:= a[n]= Block[{$RecursionLimit = Infinity}, Sum[T[i,j], {i,0,n}, {j,0,i}]];
Table[a[n], {n,0,40}] (* G. C. Greubel, Dec 19 2021 *)
-
@CachedFunction
def T(n,k): # T = A026552
if (k==0 or k==2*n): return 1
elif (k==1 or k==2*n-1): return (n+2)//2
elif (n%2==0): return T(n-1, k) + T(n-1, k-1) + T(n-1, k-2)
else: return T(n-1, k) + T(n-1, k-2)
@CachedFunction
def a(n): return sum( sum( T(i,j) for j in (0..i) ) for i in (0..n) )
[a(n) for n in (0..40)] # G. C. Greubel, Dec 19 2021
A027272
Self-convolution of row n of array T given by A026552.
Original entry on oeis.org
1, 3, 19, 58, 462, 1608, 13446, 48924, 417440, 1553940, 13409576, 50618184, 440013462, 1676640462, 14649846820, 56201554888, 492944907180, 1900789437276, 16721000706580, 64734185205960, 570792185166764, 2216888144737508, 19584623363041704, 76265067399850848
Offset: 0
Cf.
A026552,
A026553,
A026554,
A026555,
A026556,
A026557,
A026558,
A026559,
A026560,
A026563,
A026564,
A026566,
A026567,
A027273,
A027274,
A027275,
A027276.
-
T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[(n+2)/2], If[EvenQ[n], T[n-1, k-2] + T[n-1, k] + T[n-1, k-1], T[n-1, k-2] + T[n-1, k]]]]; (* T=A026552 *)
a[n_]:= a[n]= Block[{$RecursionLimit = Infinity}, Sum[T[n, k]*T[n, 2*n-k], {k, 0, 2*n}]];
Table[a[n], {n,0,40}] (* G. C. Greubel, Dec 18 2021 *)
-
@CachedFunction
def T(n,k): # T = A026552
if (k==0 or k==2*n): return 1
elif (k==1 or k==2*n-1): return (n+2)//2
elif (n%2==0): return T(n-1, k) + T(n-1, k-1) + T(n-1, k-2)
else: return T(n-1, k) + T(n-1, k-2)
@CachedFunction
def a(n): return sum( T(n,k)*T(n,2*n-k) for k in (0..2*n) )
[a(n) for n in (0..40)] # G. C. Greubel, Dec 18 2021
A027273
a(n) = Sum_{k=0..2n-1} T(n,k) * T(n,k+1), with T given by A026552.
Original entry on oeis.org
2, 16, 52, 428, 1516, 12792, 46936, 402164, 1504432, 13015480, 49288856, 429204354, 1639174304, 14340670000, 55108565584, 483825847108, 1868067054968, 16445659005424, 63734526307552, 562323306397388, 2185849699156352, 19320211642880176, 75288454939134992
Offset: 1
Cf.
A026552,
A026553,
A026554,
A026555,
A026556,
A026557,
A026558,
A026559,
A026560,
A026563,
A026564,
A026566,
A026567,
A027272,
A027274,
A027275,
A027276.
-
T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[(n+2)/2], If[EvenQ[n], T[n-1, k-2] + T[n-1, k] + T[n-1, k-1], T[n-1, k-2] + T[n-1, k]]]]; (* T=A026552 *)
a[n_]:= a[n]= Block[{$RecursionLimit = Infinity}, Sum[T[n, k]*T[n, k+1], {k, 0, 2*n-1}]];
Table[a[n], {n,0,40}] (* G. C. Greubel, Dec 18 2021 *)
-
@CachedFunction
def T(n,k): # T = A026552
if (k==0 or k==2*n): return 1
elif (k==1 or k==2*n-1): return (n+2)//2
elif (n%2==0): return T(n-1, k) + T(n-1, k-1) + T(n-1, k-2)
else: return T(n-1, k) + T(n-1, k-2)
@CachedFunction
def a(n): return sum( T(n,k)*T(n,k+1) for k in (0..2*n-1) )
[a(n) for n in (1..40)] # G. C. Greubel, Dec 18 2021
A027274
a(n) = Sum_{k=0..2n-2} T(n,k) * T(n,k+2), with T given by A026552.
Original entry on oeis.org
10, 40, 342, 1279, 11016, 41462, 359530, 1365014, 11899516, 45501743, 398306769, 1531614109, 13450930624, 51952990090, 457449811458, 1773182087440, 15646091896400, 60825762159338, 537651887201990, 2095280066101886, 18547910336883720, 72432026278468535
Offset: 2
Cf.
A026552,
A026553,
A026554,
A026555,
A026556,
A026557,
A026558,
A026559,
A026560,
A026563,
A026564,
A026566,
A026567,
A027272,
A027273,
A027275,
A027276.
-
T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[(n+2)/2], If[EvenQ[n], T[n-1, k-2] + T[n-1, k] + T[n-1, k-1], T[n-1, k-2] + T[n-1, k]]]]; (* T=A026552 *)
a[n_]:= a[n]= Block[{$RecursionLimit = Infinity}, Sum[T[n, k]*T[n, k+2], {k, 0, 2*n-2}]];
Table[a[n], {n,2,40}] (* G. C. Greubel, Dec 18 2021 *)
-
@CachedFunction
def T(n,k): # T = A026552
if (k==0 or k==2*n): return 1
elif (k==1 or k==2*n-1): return (n+2)//2
elif (n%2==0): return T(n-1, k) + T(n-1, k-1) + T(n-1, k-2)
else: return T(n-1, k) + T(n-1, k-2)
@CachedFunction
def a(n): return sum( T(n,k)*T(n,k+2) for k in (0..2*n-2) )
[a(n) for n in (2..40)] # G. C. Greubel, Dec 18 2021
A027275
a(n) = Sum_{k=0..2n-3} T(n,k) * T(n,k+3), with T given by A026552.
Original entry on oeis.org
24, 232, 954, 8560, 33648, 297940, 1159844, 10242416, 39809076, 351561242, 1367463642, 12086555584, 47082494816, 416589513644, 1625447736120, 14397549291280, 56265306436584, 498879779964188, 1952476424575980, 17327820010494464, 67907006619888744
Offset: 3
Cf.
A026552,
A026553,
A026554,
A026555,
A026556,
A026557,
A026558,
A026559,
A026560,
A026563,
A026564,
A026566,
A026567,
A027272,
A027273,
A027274,
A027276.
-
T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[(n+2)/2], If[EvenQ[n], T[n-1, k-2] + T[n-1, k] + T[n-1, k-1], T[n-1, k-2] + T[n-1, k]]]]; (* T=A026552 *)
a[n_]:= a[n]= Block[{$RecursionLimit = Infinity}, Sum[T[n, k]*T[n, k+3], {k, 0, 2*n-3}]];
Table[a[n], {n,3,40}] (* G. C. Greubel, Dec 18 2021 *)
-
@CachedFunction
def T(n,k): # T = A026552
if (k==0 or k==2*n): return 1
elif (k==1 or k==2*n-1): return (n+2)//2
elif (n%2==0): return T(n-1, k) + T(n-1, k-1) + T(n-1, k-2)
else: return T(n-1, k) + T(n-1, k-2)
@CachedFunction
def a(n): return sum( T(n,k)*T(n,k+3) for k in (0..2*n-3) )
[a(n) for n in (3..40)] # G. C. Greubel, Dec 18 2021
A027276
a(n) = Sum_{k=0..2n} (k+1) * A026552(n, k).
Original entry on oeis.org
1, 6, 27, 72, 270, 648, 2268, 5184, 17496, 38880, 128304, 279936, 909792, 1959552, 6298560, 13436928, 42830208, 90699264, 287214336, 604661760, 1904684544, 3990767616, 12516498432, 26121388032, 81629337600, 169789022208
Offset: 0
Cf.
A026552,
A026553,
A026554,
A026555,
A026556,
A026557,
A026558,
A026559,
A026560,
A026563,
A026564,
A026566,
A026567,
A027272,
A027273,
A027274,
A027275.
-
I:= [6,27,72,270]; [1] cat [n le 4 select I[n] else 12*(Self(n-2) - 3*Self(n-4)): n in [1..41]]; // G. C. Greubel, Dec 18 2021
-
Table[-(1/2)*Boole[n==0] + (1/4)*6^(n/2)*(n+1)*(3*(1+(-1)^n) + Sqrt[6]*(1-(-1)^n)), {n, 0, 40}] (* G. C. Greubel, Dec 18 2021 *)
-
a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; -36,0,12,0]^n*[1;6;27;72])[1,1] \\ Charles R Greathouse IV, Oct 21 2022
-
@CachedFunction
def T(n,k): # T = A026552
if (k==0 or k==2*n): return 1
elif (k==1 or k==2*n-1): return (n+2)//2
elif (n%2==0): return T(n-1, k) + T(n-1, k-1) + T(n-1, k-2)
else: return T(n-1, k) + T(n-1, k-2)
@CachedFunction
def a(n): return sum( (k+1)*T(n,k) for k in (0..2*n) )
[a(n) for n in (0..40)] # G. C. Greubel, Dec 18 2021
Showing 1-7 of 7 results.