A026799 Number of partitions of n in which the least part is 6.
0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 6, 6, 8, 9, 11, 12, 16, 17, 21, 24, 29, 32, 40, 44, 53, 60, 71, 80, 96, 107, 126, 143, 167, 188, 221, 248, 288, 326, 376, 424, 491, 552, 634, 716, 819, 922, 1056, 1187, 1353, 1523, 1730, 1944, 2209, 2478, 2806, 3151
Offset: 0
Examples
a(0)=0 because there does not exist a least part of the empty partition. The a(6)=1 partition is 6. The a(12)=1 partition is 6+6. The a(13)=1 partition is 6+7. ............................. The a(17)=1 partition is 6+11. The a(18)=2 partitions are 6+6+6 and 6+12.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Jason Kimberley, Index of sequences counting not necessarily connected k-regular simple graphs with girth exactly g
Crossrefs
Essentially the same as A185326.
Not necessarily connected 2-regular graphs with girth at least g [partitions into parts >= g]: A026807 (triangle); chosen g: A000041 (g=1 -- multigraphs with loops allowed), A002865 (g=2 -- multigraphs with loops forbidden), A008483 (g=3), A008484 (g=4), A185325(g=5), A185326 (g=6), A185327 (g=7), A185328 (g=8), A185329 (g=9).
Not necessarily connected 2-regular graphs with girth exactly g [partitions with smallest part g]: A026794 (triangle); chosen g: A002865 (g=2 -- multigraphs with at least one pair of parallel edges, but loops forbidden), A026796 (g=3), A026797 (g=4), A026798 (g=5), this sequence (g=6), A026800 (g=7), A026801 (g=8), A026802 (g=9), A026803 (g=10). - Jason Kimberley, Feb 04 2011
Programs
-
Magma
p := func< n | n lt 0 select 0 else NumberOfPartitions(n) >; A026799 := func< n | p(n-6)-p(n-7)-p(n-8)+p(n-11)+p(n-12)+p(n-13)- p(n-14)-p(n-15)-p(n-16)+p(n-19)+p(n-20)-p(n-21) >; // Jason Kimberley, Feb 04 2011
-
Magma
R
:=PowerSeriesRing(Integers(), 60); [0,0,0,0,0,0] cat Coefficients(R!( x^6/(&*[1-x^(m+6): m in [0..70]]) )); // G. C. Greubel, Nov 03 2019 -
Maple
ZL := [ B,{B=Set(Set(Z, card>=6))}, unlabeled ]: 0,0,0,0,0,0, seq(combstruct[count](ZL, size=n), n=0..63); # Zerinvary Lajos, Mar 13 2007 seq(coeff(series(x^6/mul(1-x^(m+6), m=0..70), x, n+1), x, n), n = 0..65); # G. C. Greubel, Nov 03 2019
-
Mathematica
f[1, 1]=f[0, k_]=1; f[n_, k_]:= f[n, k] = If[n<0, 0, If[k>n, 0, If[k==n, 1, f[n, k+1] +f[n-k, k]]]]; Join[{0,0,0,0,0,0}, Table[f[n, 6], {n, 0, 65}]] (* Robert G. Wilson v, Jan 31 2011 *) CoefficientList[Series[x^6/QPochhammer[x^6, x], {x,0,70}], x] (* G. C. Greubel, Nov 03 2019 *) Join[{0},Table[Count[IntegerPartitions[n][[;;,-1]],6],{n,70}]] (* Harvey P. Dale, Dec 27 2023 *)
-
PARI
my(x='x+O('x^60)); concat([0,0,0,0,0,0], Vec(x^6/prod(m=0,70, 1-x^(m+6)))) \\ G. C. Greubel, Nov 03 2019
-
Sage
def A026799_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( x^6/product((1-x^(m+6)) for m in (0..70)) ).list() A026799_list(65) # G. C. Greubel, Nov 03 2019
Formula
G.f.: x^6 * Product_{m>=6} 1/(1-x^m).
a(n) = p(n-6) -p(n-7) -p(n-8) +p(n-11) +p(n-12) +p(n-13) -p(n-14) -p(n-15) -p(n-16) +p(n-19) +p(n-20) -p(n-21) for n>0 where p(n) = A000041(n). - Shanzhen Gao, Oct 28 2010
a(n) ~ exp(Pi*sqrt(2*n/3)) * 5*Pi^5 / (18*sqrt(2)*n^(7/2)). - Vaclav Kotesovec, Jun 02 2018
G.f.: Sum_{k>=1} x^(6*k) / Product_{j=1..k-1} (1 - x^j). - Ilya Gutkovskiy, Nov 25 2020
Comments