A026807 Triangular array T read by rows: T(n,k) = number of partitions of n in which every part is >=k, for k=1,2,...,n.
1, 2, 1, 3, 1, 1, 5, 2, 1, 1, 7, 2, 1, 1, 1, 11, 4, 2, 1, 1, 1, 15, 4, 2, 1, 1, 1, 1, 22, 7, 3, 2, 1, 1, 1, 1, 30, 8, 4, 2, 1, 1, 1, 1, 1, 42, 12, 5, 3, 2, 1, 1, 1, 1, 1, 56, 14, 6, 3, 2, 1, 1, 1, 1, 1, 1, 77, 21, 9, 5, 3, 2, 1, 1, 1, 1, 1, 1, 101, 24, 10, 5, 3, 2, 1, 1, 1, 1, 1, 1, 1, 135, 34, 13
Offset: 1
Examples
Sum_{k>=1} y^k*(-1+1/Product_{i>=0} (1-x^(k+i))) = y*x+(2*y+y^2)*x^2+(3*y+y^2+y^3)*x^3+(5*y+2*y^2+y^3+y^4)*x^4+(7*y+2*y^2+y^3+y^4+y^5)*x^5+... Triangle starts: - _Jason Kimberley_, Feb 05 2012 1; 2, 1; 3, 1, 1; 5, 2, 1, 1; 7, 2, 1, 1, 1; 11, 4, 2, 1, 1, 1; 15, 4, 2, 1, 1, 1, 1; 22, 7, 3, 2, 1, 1, 1, 1; 30, 8, 4, 2, 1, 1, 1, 1, 1; 42, 12, 5, 3, 2, 1, 1, 1, 1, 1; 56, 14, 6, 3, 2, 1, 1, 1, 1, 1, 1; 77, 21, 9, 5, 3, 2, 1, 1, 1, 1, 1, 1; 101, 24, 10, 5, 3, 2, 1, 1, 1, 1, 1, 1, 1; From _Tilman Piesk_, Feb 20 2016: (Start) n = 12, k = 4, t = A000217(k-1) = 6 vp = A000041(n..n-t) = A000041(12..6) = (77, 56, 42, 30, 22, 15, 11) vc = A231599(k-1, 0..t) = A231599(3, 0..6) = (1,-1,-1, 0, 1, 1,-1) T(12, 4) = vp * transpose(vc) = 77-56-42+22+15-11 = 5 (End)
Links
- Alois P. Heinz, Rows n = 1..141, flattened
- Jason Kimberley, Index of sequences counting not necessarily connected k-regular simple graphs with girth at least g
- Tilman Piesk, Table for n = 1..30, table for n = 2..150 without values 1, illustrations of columns n = 2, 3, 4, 5, 6, 7, 8
Crossrefs
Row sums give A046746.
Cf. A026835.
Cf. A026794.
Cf. A231599.
Not necessarily connected 2-regular graphs with girth at least g [partitions into parts >= g]: this sequence (triangle); columns of this sequence: A000041 (g=1 -- multigraphs with loops allowed), A002865 (g=2 -- multigraphs with loops forbidden), A008483 (g=3), A008484 (g=4), A185325(g=5), A185326 (g=6), A185327 (g=7), A185328 (g=8), A185329 (g=9). For g >= 3, girth at least g implies no loops or parallel edges. - Jason Kimberley, Feb 05 2012
Not necessarily connected 2-regular simple graphs with girth exactly g [partitions with smallest part g]: A026794 (triangle); chosen g: A002865 (g=2), A026796 (g=3), A026797 (g=4), A026798 (g=5), A026799 (g=6), A026800(g=7), A026801 (g=8), A026802 (g=9), A026803 (g=10). - Jason Kimberley, Feb 05 2012
Cf. A002260.
Programs
-
Haskell
import Data.List (tails) a026807 n k = a026807_tabl !! (n-1) !! (k-1) a026807_row n = a026807_tabl !! (n-1) a026807_tabl = map (\row -> map (p $ last row) $ init $ tails row) a002260_tabl where p 0 _ = 1 p _ [] = 0 p m ks'@(k:ks) = if m < k then 0 else p (m - k) ks' + p m ks -- Reinhard Zumkeller, Dec 01 2012
-
Maple
T:= proc(n, k) option remember; `if`(k<1 or k>n, 0, `if`(n=k, 1, T(n, k+1) +T(n-k, k))) end: seq(seq(T(n, k), k=1..n), n=1..14); # Alois P. Heinz, Mar 28 2012
-
Mathematica
T[n_, k_] := T[n, k] = If[ k<1 || k>n, 0, If[n == k, 1, T[n, k+1] + T[n-k, k]]]; Table [Table[ T[n, k], {k, 1, n}], {n, 1, 14}] // Flatten (* Jean-François Alcover, Jan 28 2015, after Alois P. Heinz *)
-
Python
from see_there import a231599_row # A231599 from sympy.ntheory import npartitions # A000041 def a026807(n, k): if k > n: return 0 elif k > n/2: return 1 else: vc = a231599_row(k-1) t = len(vc) vp_range = range(n-t, n+1) vp_range = vp_range[::-1] # reverse r = 0 for i in range(0, t): r += vc[i] * npartitions(vp_range[i]) return r # Tilman Piesk, Feb 21 2016
Formula
G.f.: Sum_{k>=1} y^k*(-1+1/Product_{i>=0} (1-x^(k+i))). - Vladeta Jovovic, Jun 22 2003
T(n, k) = T(n, k+1) + T(n-k, k), T(n, k) = 1 if n/2 < k <= n. - Franklin T. Adams-Watters, Jan 24 2005; Tilman Piesk, Feb 20 2016
T(n, k) = A000041(n..n-t) * transpose(A231599(k-1, 0..t)) with t = A000217(k-1). - Tilman Piesk, Feb 20 2016
Comments