A026812 Number of partitions of n in which the greatest part is 6.
0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 5, 7, 11, 14, 20, 26, 35, 44, 58, 71, 90, 110, 136, 163, 199, 235, 282, 331, 391, 454, 532, 612, 709, 811, 931, 1057, 1206, 1360, 1540, 1729, 1945, 2172, 2432, 2702, 3009, 3331, 3692, 4070, 4494, 4935, 5427, 5942, 6510, 7104, 7760
Offset: 0
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 1..1000 from Vincenzo Librandi)
- G. E. Andrews, Partitions: At the Interface of q-Series and Modular Forms, The Ramanujan Journal 7, 385-400 (2003), Eq.(3.10).
- Index entries for linear recurrences with constant coefficients, signature (1,1,0,0,-1,0,-2,0,1,1,1,1,0,-2,0,-1,0,0,1,1,-1).
Crossrefs
Programs
-
GAP
List([0..70],n->NrPartitions(n,6)); # Muniru A Asiru, May 17 2018
-
Mathematica
Table[ Length[ Select[ Partitions[n], First[ # ] == 6 & ]], {n, 1, 60} ] CoefficientList[Series[x^6/((1 - x) (1 - x^2) (1 - x^3) (1 - x^4) (1 - x^5) (1 - x^6)), {x, 0, 60}], x] (* Vincenzo Librandi, Oct 18 2013 *) Drop[LinearRecurrence[{1,1,0,0,-1,0,-2,0,1,1,1,1,0,-2,0,-1,0,0,1,1,-1}, Append[Table[0,{20}],1],115],14] (* Robert A. Russell, May 17 2018 *)
-
PARI
my(x='x+O('x^99)); concat(vector(6), Vec(x^6/prod(k=1, 6, 1-x^k))) \\ Altug Alkan, May 17 2018
-
PARI
a = vector(60,n,n--; round((n+11)*((6*n^4+249*n^3+2071*n^2 -4931*n+40621) /518400 +n\2*(n+10)/192+((n+1)\3+n\3*2)/54))); a = concat([0,0,0,0,0,0], a) \\ Washington Bomfim, Jan 16 2021
Formula
G.f.: x^6 / ((1-x)*(1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)*(1-x^6)). - Colin Barker, Dec 20 2012
a(n) = A008284(n,6). - Robert A. Russell, May 13 2018
a(n) = Sum_{m=1..floor(n/6)} Sum_{l=m..floor((n-m)/5)} Sum_{k=l..floor((n-l-m)/4)} Sum_{j=k..floor((n-k-l-m)/3)} Sum_{i=j..floor((n-j-k-l-m)/2)} 1. - Wesley Ivan Hurt, Jun 29 2019
a(n) = round((1/86400)*n^5 + (1/3840)*n^4 + (19/12960)*n^3 - (n mod 2)*(1/384)*n^2 + (1/17280)*b(n mod 6)*n), where b(0)=96, b(1)=b(5)=-629, b(2)=b(4)=-224, and b(3)=-309. - Washington Bomfim and Jon E. Schoenfield, Jan 16 2021
Extensions
More terms from Robert G. Wilson v, Jan 11 2002
a(0)=0 prepended by Seiichi Manyama, Jun 08 2017
Comments