cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026812 Number of partitions of n in which the greatest part is 6.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 5, 7, 11, 14, 20, 26, 35, 44, 58, 71, 90, 110, 136, 163, 199, 235, 282, 331, 391, 454, 532, 612, 709, 811, 931, 1057, 1206, 1360, 1540, 1729, 1945, 2172, 2432, 2702, 3009, 3331, 3692, 4070, 4494, 4935, 5427, 5942, 6510, 7104, 7760
Offset: 0

Views

Author

Keywords

Comments

Also number of partitions of n into 6 parts. - Washington Bomfim, Jan 15 2021

Crossrefs

Essentially same as A001402.

Programs

  • GAP
    List([0..70],n->NrPartitions(n,6)); # Muniru A Asiru, May 17 2018
  • Mathematica
    Table[ Length[ Select[ Partitions[n], First[ # ] == 6 & ]], {n, 1, 60} ]
    CoefficientList[Series[x^6/((1 - x) (1 - x^2) (1 - x^3) (1 - x^4) (1 - x^5) (1 - x^6)), {x, 0, 60}], x] (* Vincenzo Librandi, Oct 18 2013 *)
    Drop[LinearRecurrence[{1,1,0,0,-1,0,-2,0,1,1,1,1,0,-2,0,-1,0,0,1,1,-1}, Append[Table[0,{20}],1],115],14] (* Robert A. Russell, May 17 2018 *)
  • PARI
    my(x='x+O('x^99)); concat(vector(6), Vec(x^6/prod(k=1, 6, 1-x^k))) \\ Altug Alkan, May 17 2018
    
  • PARI
    a = vector(60,n,n--; round((n+11)*((6*n^4+249*n^3+2071*n^2 -4931*n+40621) /518400 +n\2*(n+10)/192+((n+1)\3+n\3*2)/54))); a = concat([0,0,0,0,0,0], a) \\ Washington Bomfim, Jan 16 2021
    

Formula

G.f.: x^6 / ((1-x)*(1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)*(1-x^6)). - Colin Barker, Dec 20 2012
a(n) = A008284(n,6). - Robert A. Russell, May 13 2018
a(n) = Sum_{m=1..floor(n/6)} Sum_{l=m..floor((n-m)/5)} Sum_{k=l..floor((n-l-m)/4)} Sum_{j=k..floor((n-k-l-m)/3)} Sum_{i=j..floor((n-j-k-l-m)/2)} 1. - Wesley Ivan Hurt, Jun 29 2019
a(n) = A001402(n) - A001401(n). a(n) = A001402(n-6). - Washington Bomfim, Jan 15 2021
a(n) = round((1/86400)*n^5 + (1/3840)*n^4 + (19/12960)*n^3 - (n mod 2)*(1/384)*n^2 + (1/17280)*b(n mod 6)*n), where b(0)=96, b(1)=b(5)=-629, b(2)=b(4)=-224, and b(3)=-309. - Washington Bomfim and Jon E. Schoenfield, Jan 16 2021

Extensions

More terms from Robert G. Wilson v, Jan 11 2002
a(0)=0 prepended by Seiichi Manyama, Jun 08 2017