A026905 Partial sums of the partition numbers A000041 of the positive integers.
1, 3, 6, 11, 18, 29, 44, 66, 96, 138, 194, 271, 372, 507, 683, 914, 1211, 1596, 2086, 2713, 3505, 4507, 5762, 7337, 9295, 11731, 14741, 18459, 23024, 28628, 35470, 43819, 53962, 66272, 81155, 99132, 120769, 146784, 177969, 215307, 259890, 313064, 376325, 451500
Offset: 1
Keywords
Links
- Riccardo Aragona, Roberto Civino, and Norberto Gavioli, An ultimately periodic chain in the integral Lie ring of partitions, J. Algebr. Comb. (2024). See p. 11.
- Thomas M. A. Fink, Emmanuel Barillot, and Sebastian E. Ahnert, Dynamics of network motifs, 2006.
- Ricardo Gómez Aíza, Trees with flowers: A catalog of integer partition and integer composition trees with their asymptotic analysis, arXiv:2402.16111 [math.CO], 2024. See p. 23.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 800
Programs
-
Maple
a:= n-> add(combinat[numbpart](k), k=1..n): seq(a(n), n=1..44); # Zerinvary Lajos, Jun 01 2008
-
Mathematica
Table[ Sum[ PartitionsP[k], {k, 1, n}], {n, 1, 45}] (* or: *) PartitionsP[Range[45]] // Accumulate (* Jean-François Alcover, Jun 19 2019 *) CoefficientList[Series[(QPochhammer[x] - 1)/(x (x - 1) QPochhammer[x]), {x, 0, 20}], x] (* Eric W. Weisstein, Apr 29 2022 *)
-
PARI
a(n) = sum(k=1, n, numbpart(k)); \\ Michel Marcus, Jul 19 2023
-
Python
from sympy import partition def A026905(n): return sum(partition(k) for k in range(1,n+1)) # Chai Wah Wu, Nov 23 2024
Formula
a(n) = A000070(n) - 1, n >= 1.
a(n) ~ exp(Pi*sqrt(2*n/3)) / (2^(3/2)*Pi*sqrt(n)) * (1 + 11*Pi/(24*sqrt(6*n))). - Vaclav Kotesovec, Oct 25 2016
G.f.: -1/(1 - x) + (1/(1 - x))*Product_{k>=1} 1/(1 - x^k). - Ilya Gutkovskiy, Dec 25 2016
Extensions
Edited by N. J. A. Sloane, Jun 20 2015
Name clarified by Omar E. Pol, Apr 30 2022
Comments