cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026905 Partial sums of the partition numbers A000041 of the positive integers.

Original entry on oeis.org

1, 3, 6, 11, 18, 29, 44, 66, 96, 138, 194, 271, 372, 507, 683, 914, 1211, 1596, 2086, 2713, 3505, 4507, 5762, 7337, 9295, 11731, 14741, 18459, 23024, 28628, 35470, 43819, 53962, 66272, 81155, 99132, 120769, 146784, 177969, 215307, 259890, 313064, 376325, 451500
Offset: 1

Views

Author

Keywords

Comments

Equivalently, a(n) = number of sums S of positive integers satisfying S <= n.
Equivalently, first differences give A000041. - Jacques ALARDET, Aug 04 2008, Aug 15 2008
For the partial sums of the partitions numbers of nonnegative integers A001477 see A000070. - Omar E. Pol, Nov 12 2011
Also number of parts in all regions of n that contain 1 as a part (Cf. A206437). - Omar E. Pol, Mar 11 2012
Also the number of graph minors of the path graph P_n (not counting the null graph). - Eric W. Weisstein, Apr 29 2022

Crossrefs

Programs

  • Maple
    a:= n-> add(combinat[numbpart](k), k=1..n): seq(a(n), n=1..44); # Zerinvary Lajos, Jun 01 2008
  • Mathematica
    Table[ Sum[ PartitionsP[k], {k, 1, n}], {n, 1, 45}]
    (* or: *)
    PartitionsP[Range[45]] // Accumulate (* Jean-François Alcover, Jun 19 2019 *)
    CoefficientList[Series[(QPochhammer[x] - 1)/(x (x - 1) QPochhammer[x]), {x, 0, 20}], x] (* Eric W. Weisstein, Apr 29 2022 *)
  • PARI
    a(n) = sum(k=1, n, numbpart(k)); \\ Michel Marcus, Jul 19 2023
    
  • Python
    from sympy import partition
    def A026905(n): return sum(partition(k) for k in range(1,n+1)) # Chai Wah Wu, Nov 23 2024

Formula

a(n) = A000070(n) - 1, n >= 1.
a(n) ~ exp(Pi*sqrt(2*n/3)) / (2^(3/2)*Pi*sqrt(n)) * (1 + 11*Pi/(24*sqrt(6*n))). - Vaclav Kotesovec, Oct 25 2016
G.f.: -1/(1 - x) + (1/(1 - x))*Product_{k>=1} 1/(1 - x^k). - Ilya Gutkovskiy, Dec 25 2016

Extensions

Edited by N. J. A. Sloane, Jun 20 2015
Name clarified by Omar E. Pol, Apr 30 2022