cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026933 Self-convolution of array T given by A008288.

Original entry on oeis.org

1, 2, 11, 52, 269, 1414, 7575, 41064, 224665, 1237898, 6859555, 38187164, 213408805, 1196524814, 6727323439, 37915058384, 214140178225, 1211694546194, 6867622511675, 38981807403268, 221562006394173, 1260814207833750, 7182599953332423, 40958645048598840, 233779564099963081
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[1/(1+x)/Sqrt[1-6*x+x^2],{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 08 2012 *)
    a[ n_]:= Sum[ SeriesCoefficient[ SeriesCoefficient[1/(1-x-y-x*y) , {x,0,n-k}] , {y, 0, k}]^2, {k, 0, n}]; (* Michael Somos, Jun 27 2017 *)
    A026933[n_]:= Sum[(Binomial[n, k]*Hypergeometric2F1[-k,k-n,-n,-1])^2, {k,0,n}];
    Table[A026933[n], {n, 0, 40}] (* G. C. Greubel, May 25 2021 *)
  • PARI
    /* Sum of squares of Delannoy numbers: */
    {a(n)=sum(k=0,n,polcoeff(polcoeff(1/(1-x-y-x*y +x*O(x^n)+y*O(y^k)),n-k,x),k,y)^2)} \\ Paul D. Hanna, Jan 10 2012
    
  • PARI
    /* Involving squares of companion Pell numbers: */
    {A002203(n)=polcoeff(2*x*(1+x)/(1-2*x-x^2+x*O(x^n)),n)}
    {a(n)=polcoeff(exp(sum(k=1, n, A002203(k)^2/2*x^k/k)+x*O(x^n)), n)}
    \\ Paul D. Hanna, Jan 10 2012
    
  • PARI
    my(x='x+O('x^66)); Vec( 1/(1+x)/sqrt(1-6*x+x^2) ) \\ Joerg Arndt, May 04 2013
    
  • Sage
    def A026933_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1/((1+x)*sqrt(1-6*x+x^2)) ).list()
    A026933_list(40) # G. C. Greubel, May 25 2021

Formula

a(n) = Sum_{k=0..n} D(n-k,k)^2 where D(n,k) = A008288(n,k) are the Delannoy numbers. - Paul D. Hanna, Jan 10 2012
G.f.: 1/((1+x)*sqrt(1-6*x+x^2)). - Vladeta Jovovic, May 13 2003
a(n) = (-1)^n*Sum_{k=0...n} (-1)^k*A001850(k). - Benoit Cloitre, Sep 28 2005
G.f.: exp( Sum_{n>=1} A002203(n)^2/2 * x^n/n ), where A002203 are the companion Pell numbers. - Paul D. Hanna, Jan 10 2012
Self-convolution yields A204062; self-convolution of A204061. - Paul D. Hanna, Jan 10 2012
From Vaclav Kotesovec, Oct 08 2012: (Start)
Recurrence: n*a(n) = (5*n-3)*a(n-1) + (5*n-2)*a(n-2) - (n-1)*a(n-3).
a(n) ~ sqrt(24+17*sqrt(2))*(3+2*sqrt(2))^n/(8*sqrt(Pi*n)). (End)
0 = +a(n)*(+a(n+1) -8*a(n+2) -7*a(n+3) +2*a(n+4)) +a(n+1)*(-2*a(n+1) +22*a(n+2) +20*a(n+3) -7*a(n+4)) +a(n+2)*(+30*a(n+2) +22*a(n+3) -8*a(n+4)) +a(n+3)*(-2*a(n+3) +a(n+4)) for all n in Z. - Michael Somos, Jun 27 2017

Extensions

More terms from Vladeta Jovovic, May 13 2003