cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A027188 a(n) = number of partitions of n into an odd number of parts, the least being 2; also a(n+2) = number of partitions of n into an even number of parts, each >=2.

Original entry on oeis.org

0, 0, 1, 0, 0, 0, 1, 1, 2, 2, 4, 4, 6, 7, 11, 12, 17, 20, 28, 33, 44, 52, 69, 82, 105, 126, 161, 191, 239, 286, 355, 423, 520, 618, 755, 896, 1084, 1285, 1549, 1829, 2190, 2583, 3079, 3621, 4297, 5041, 5960, 6977, 8214, 9595, 11264, 13123, 15353, 17854, 20828
Offset: 0

Views

Author

Keywords

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, t, `if`(i<2, 0,
           b(n, i-1, t) +`if`(i>n, 0, b(n-i, i, 1-t))))
        end:
    a:= n-> b(n-2$2, 1):
    seq(a(n), n=0..80);  # Alois P. Heinz, Feb 27 2014
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n==0, t, If[i<2, 0, b[n, i-1, t] + If[i>n, 0, b[n-i, i, 1-t]]]]; a[n_] := b[n-2, n-2, 1]; Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Apr 08 2015, after Alois P. Heinz *)
  • PARI
    gf=sum(n=0, N,  q^(2*n+1)/prod(k=1,n, 1-q^(2*k)) * q^(2*n+1)/prod(k=1,n, 1-q^(2*k-1)) );
    concat([0], Vec(gf) ) \\ Joerg Arndt, Feb 27 2014

Formula

G.f.: sum(n>=0, q^(2*n+1)/prod(k=1..n, 1-q^(2*k)) * q^(2*n+1)/prod(k=1..n, 1-q^(2*k-1)) ). [Joerg Arndt, Feb 27 2014]
a(n+2) + A027194(n+2) = A002865(n). - R. J. Mathar, Jun 16 2018
G.f.: x^2 * Sum_{k>=0} x^(4*k)/Product_{j=1..2*k} (1-x^j). - Seiichi Manyama, May 15 2023
a(n) ~ Pi * exp(Pi*sqrt(2*n/3)) / (3*2^(7/2)*n^(3/2)). - Vaclav Kotesovec, Jun 20 2025

A027199 Triangular array T read by rows: T(n,k) = number of partitions of n into an odd number of parts, each >=k.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 1, 5, 2, 1, 1, 1, 1, 8, 2, 1, 1, 1, 1, 1, 10, 3, 1, 1, 1, 1, 1, 1, 16, 4, 2, 1, 1, 1, 1, 1, 1, 20, 6, 2, 1, 1, 1, 1, 1, 1, 1, 29, 7, 3, 1, 1, 1, 1, 1, 1, 1, 1, 37, 10, 4, 2, 1, 1, 1, 1, 1, 1, 1, 1, 52, 12, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 66, 17, 6, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Keywords

Examples

			Triangle begins:
   1;
   1,  1;
   2,  1, 1;
   2,  1, 1, 1;
   4,  1, 1, 1, 1;
   5,  2, 1, 1, 1, 1;
   8,  2, 1, 1, 1, 1, 1;
  10,  3, 1, 1, 1, 1, 1, 1;
  16,  4, 2, 1, 1, 1, 1, 1, 1;
  20,  6, 2, 1, 1, 1, 1, 1, 1, 1;
  29,  7, 3, 1, 1, 1, 1, 1, 1, 1, 1;
  37, 10, 4, 2, 1, 1, 1, 1, 1, 1, 1, 1;
  52, 12, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1;
		

Crossrefs

Programs

  • PARI
    T(n, k) = polcoef(x^k*sum(i=0, n, x^(2*k*i)/prod(j=1, 2*i+1, 1-x^j+x*O(x^n))), n); \\ Seiichi Manyama, May 15 2023

Formula

T(n, k) = Sum{O(n, i)}, k<=i<=n, O given by A027185.
T(n,k) + A027200(n,k) = A026807(n,k). - R. J. Mathar, Oct 18 2019
G.f. of column k: x^k * Sum_{i>=0} x^(2*k*i)/Product_{j=1..2*i+1} (1-x^j). - Seiichi Manyama, May 15 2023

Extensions

More terms from Seiichi Manyama, May 15 2023

A298596 Expansion of Product_{k>=2} 1/(1 + x^k).

Original entry on oeis.org

1, 0, -1, -1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, -1, 1, 0, 0, -1, 1, -1, 0, -1, 2, -1, 0, -2, 2, -1, 1, -2, 3, -2, 1, -3, 4, -2, 2, -4, 5, -3, 3, -5, 6, -5, 4, -6, 9, -6, 5, -9, 10, -8, 8, -11, 13, -11, 10, -14, 17, -14, 13, -19, 21, -18, 18, -23, 26, -24, 23, -29, 34, -30, 29, -38, 41, -38, 39
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 22 2018

Keywords

Comments

The difference between the number of partitions of n into an even number of parts > 1 and the number of partitions of n into an odd number of parts > 1.
Convolution inverse of A025147.

Crossrefs

Programs

  • Mathematica
    nmax = 78; CoefficientList[Series[Product[1/(1 + x^k), {k, 2, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=2} 1/(1 + x^k).
a(n) = (-1)^n * (A000700(n) - A000700(n-1)), for n > 0. - Vaclav Kotesovec, Jun 06 2018
a(n) ~ (-1)^n * Pi * exp(Pi*sqrt(n/6)) / (2^(13/4) * 3^(3/4) * n^(5/4)). - Vaclav Kotesovec, Jun 06 2018
a(n) = A027188(n+2) - A027194(n+2). - R. J. Mathar, Jun 16 2018
Showing 1-3 of 3 results.