cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A053250 Coefficients of the '3rd-order' mock theta function phi(q).

Original entry on oeis.org

1, 1, 0, -1, 1, 1, -1, -1, 0, 2, 0, -2, 1, 1, -1, -2, 1, 3, -1, -2, 1, 2, -2, -3, 1, 4, 0, -4, 2, 3, -2, -4, 1, 5, -2, -5, 3, 5, -3, -5, 2, 7, -2, -7, 3, 6, -4, -8, 3, 9, -2, -9, 5, 9, -5, -10, 3, 12, -4, -12, 5, 11, -6, -13, 6, 16, -6, -15, 7, 15, -8, -17, 7, 19, -6, -20, 9, 19, -10, -22, 8, 25, -9, -25, 12, 25, -12, -27, 11, 31
Offset: 0

Views

Author

Dean Hickerson, Dec 19 1999

Keywords

Examples

			G.f. = 1 + x - x^3 + x^4 + x^5 - x^6 - x^7 + 2*x^9 - 2*x^11 + x^12 + x^13 - x^14 + ...
		

References

  • N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 55, Eq. (26.12), p. 58, Eq. (26.56).
  • Srinivasa Ramanujan, Collected Papers, Chelsea, New York, 1962, pp. 354-355
  • Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, pp. 17, 31.

Crossrefs

Other '3rd-order' mock theta functions are at A000025, A053251, A053252, A053253, A053254, A053255.

Programs

  • Maple
    f:=n->q^(n^2)/mul((1+q^(2*i)),i=1..n); add(f(n),n=0..10);
  • Mathematica
    Series[Sum[q^n^2/Product[1+q^(2k), {k, 1, n}], {n, 0, 10}], {q, 0, 100}]
    a[ n_] := SeriesCoefficient[ Sum[ x^k^2 / QPochhammer[ -x^2, x^2, k], {k, 0, Sqrt@ n}], {x, 0, n}]; (* Michael Somos, Jul 09 2015 *)
  • PARI
    {a(n) = my(t); if(n<0, 0, t = 1 + O(x^n); polcoeff( sum(k=1, sqrtint(n), t *= x^(2*k - 1) / (1 + x^(2*k)) + O(x^(n - (k-1)^2 + 1)), 1), n))}; /* Michael Somos, Jul 16 2007 */

Formula

Consider partitions of n into distinct odd parts. a(n) = number of them for which the largest part minus twice the number of parts is == 3 (mod 4) minus the number for which it is == 1 (mod 4).
a(n) = (-1)^n*(A027358(n)-A027357(n)). - Vladeta Jovovic, Mar 12 2006
G.f.: 1 + Sum_{k>0} x^k^2 / ((1 + x^2) (1 + x^4) ... (1 + x^(2*k))).
G.f. 1 + Sum_{n >= 0} x^(2*n+1)*Product_{k = 1..n} (x^(2*k-1) - 1) (Folsom et al.). Cf. A207569 and A215066. - Peter Bala, May 16 2017

A027358 Number of partitions of n into distinct odd parts, the greatest being congruent to 3 mod 4.

Original entry on oeis.org

0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 2, 2, 1, 1, 3, 3, 1, 2, 4, 4, 3, 3, 6, 6, 4, 6, 9, 9, 7, 8, 12, 12, 10, 12, 17, 18, 15, 17, 23, 24, 21, 25, 32, 33, 31, 34, 43, 45, 42, 48, 58, 61, 58, 64, 77, 80, 78, 87, 102, 107, 106, 115, 134, 141, 139, 153, 175
Offset: 1

Views

Author

Keywords

Comments

Also number of self-conjugate partitions of n into an even number of parts. - Vladeta Jovovic, Feb 18 2004

Crossrefs

Formula

a(n) = (A000700(n)+(-1)^n*A053250(n))/2. - Vladeta Jovovic, Mar 12 2006
a(n) + A027357(n) = A000700(n). - R. J. Mathar, Oct 03 2016
a(n) = Sum_{k=0..floor(n/4)-1} A027356(n, 4*k+3). - Sean A. Irvine, Oct 28 2019
Showing 1-2 of 2 results.