A027568 Numbers that are both triangular and tetrahedral.
0, 1, 10, 120, 1540, 7140
Offset: 1
References
- J.-M. De Koninck, Ces nombres qui nous fascinent, Ellipses (Paris), 2008 (entry 10, page 3; entry 120, page 41).
- L. J. Mordell, Diophantine Equations, Ac. Press, page 258.
- P. Odifreddi, Il museo dei numeri, Rizzoli, 2014, page 224.
- J. Roberts, The Lure of the Integers, page 53.
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 21.
Links
- E. T. Avanesov, Solution of a problem on figurate numbers (in Russian), Acta Arith. 12 1966/1967 pages 409-420.
- Patrick De Geest, Palindromic Tetrahedrals
- M. Gardner, Letter to N. J. A. Sloane, circa Aug 11 1980, concerning A001110, A027568, A039596, etc.
- J. Roberts, The Lure of the Integers, pp. 53. (Annotated scanned copy)
- Eric Weisstein's World of Mathematics, Tetrahedral Number
Programs
-
Maple
{seq(binomial(i,3),i=0..100000) } intersect {seq(binomial(k,2), k= 0..100000)}; # Zerinvary Lajos, Apr 26 2008
-
Mathematica
With[{trno=Accumulate[Range[0,1000]]},Intersection[trno,Accumulate[ trno]]] (* Harvey P. Dale, May 25 2014 *)
-
PARI
for(n=0,1e3,if(ispolygonal(t=n*(n+1)*(n+2)/6,3),print1(t", "))) \\ Charles R Greathouse IV, Apr 07 2013
Comments