cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027568 Numbers that are both triangular and tetrahedral.

Original entry on oeis.org

0, 1, 10, 120, 1540, 7140
Offset: 1

Views

Author

Keywords

Comments

From Anthony C Robin, Oct 27 2022: (Start)
For numbers to be triangular and tetrahedral, we look for solutions r*(r+1)*(r+2)/6 = t*(t+1)/2 = a(n). The corresponding r and t are r = A224421(n-1) and t = A102349(n).
Writing m=r+1 and s=2t+1, this problem is equivalent to solving the Diophantine equation 3 + 4*(m^3 - m) = 3*s^2. The integer solutions for this equation are m = 0, 1, 2, 4, 9, 21, 35 and the corresponding values of s are 1, 1, 3, 9, 31, 111, 239. (End)

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Ellipses (Paris), 2008 (entry 10, page 3; entry 120, page 41).
  • L. J. Mordell, Diophantine Equations, Ac. Press, page 258.
  • P. Odifreddi, Il museo dei numeri, Rizzoli, 2014, page 224.
  • J. Roberts, The Lure of the Integers, page 53.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 21.

Crossrefs

Intersection of A000217 and A000292.

Programs

  • Maple
    {seq(binomial(i,3),i=0..100000) } intersect {seq(binomial(k,2), k= 0..100000)}; # Zerinvary Lajos, Apr 26 2008
  • Mathematica
    With[{trno=Accumulate[Range[0,1000]]},Intersection[trno,Accumulate[ trno]]] (* Harvey P. Dale, May 25 2014 *)
  • PARI
    for(n=0,1e3,if(ispolygonal(t=n*(n+1)*(n+2)/6,3),print1(t", "))) \\ Charles R Greathouse IV, Apr 07 2013