A102461 Numbers n such that binomial(n,2) is in A027568.
1, 2, 5, 16, 56, 120
Offset: 1
Crossrefs
Cf. A027568.
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
a(2) = ((17 + 12*sqrt(2))^2 + (17 - 12*sqrt(2))^2 - 2)/32 = (289 + 24*sqrt(2) + 288 + 289 - 24*sqrt(2) + 288 - 2)/32 = (578 + 576 - 2)/32 = 1152/32 = 36 and 6^2 = 36 = 8*9/2 => a(2) is both the 6th square and the 8th triangular number.
a001110 n = a001110_list !! n a001110_list = 0 : 1 : (map (+ 2) $ zipWith (-) (map (* 34) (tail a001110_list)) a001110_list) -- Reinhard Zumkeller, Oct 12 2011
[n le 2 select n-1 else Floor((6*Sqrt(Self(n-1)) - Sqrt(Self(n-2)))^2): n in [1..20]]; // Vincenzo Librandi, Jul 22 2015
a:=17+12*sqrt(2); b:=17-12*sqrt(2); A001110:=n -> expand((a^n + b^n - 2)/32); seq(A001110(n), n=0..20); # Jaap Spies, Dec 12 2004 A001110:=-(1+z)/((z-1)*(z**2-34*z+1)); # Simon Plouffe in his 1992 dissertation
f[n_]:=n*(n+1)/2; lst={}; Do[If[IntegerQ[Sqrt[f[n]]],AppendTo[lst,f[n]]],{n,0,10!}]; lst (* Vladimir Joseph Stephan Orlovsky, Feb 12 2010 *) Table[(1/8) Round[N[Sinh[2 n ArcSinh[1]]^2, 100]], {n, 0, 20}] (* Artur Jasinski, Feb 10 2010 *) Transpose[NestList[Flatten[{Rest[#],34Last[#]-First[#]+2}]&, {0,1},20]][[1]] (* Harvey P. Dale, Mar 25 2011 *) LinearRecurrence[{35, -35, 1}, {0, 1, 36}, 20] (* T. D. Noe, Mar 25 2011 *) LinearRecurrence[{6,-1},{0,1},20]^2 (* Harvey P. Dale, Oct 22 2012 *) (* Square = Triangular = Triangular = A001110 *) ChebyshevU[#-1,3]^2==Binomial[ChebyshevT[#/2,3]^2,2]==Binomial[(1+ChebyshevT[#,3])/2,2]=={1,36,1225,41616,1413721}[[#]]&@Range[5] True (* Bill Gosper, Jul 20 2015 *) L=0;r={};Do[AppendTo[r,L];L=1+17*L+6*Sqrt[L+8*L^2],{i,1,19}];r (* Kebbaj Mohamed Reda, Aug 02 2023 *)
a=vector(100);a[1]=1;a[2]=36;for(n=3,#a,a[n]=34*a[n-1]-a[n-2]+2);a \\ Charles R Greathouse IV, Jul 25 2011
;; With memoizing definec-macro from Antti Karttunen's IntSeq-library. (definec (A001110 n) (if (< n 2) n (+ 2 (- (* 34 (A001110 (- n 1))) (A001110 (- n 2)))))) ;; Antti Karttunen, Dec 06 2013
;; For testing whether n is in this sequence: (define (inA001110? n) (and (zero? (A068527 n)) (inA001109? (floor->exact (sqrt n))))) (define (inA001109? n) (= (* 8 n n) (floor->exact (* (sqrt 8) n (ceiling->exact (* (sqrt 8) n)))))) ;; Antti Karttunen, Dec 06 2013
1^2 + 2^2 + 3^2 + 4^2 + 5^2 = 1 + 2 + 3 + ... + 10 = 55, so 55 is in the sequence.
q:= n-> issqr(8*n+1): select(q, [sum(j^2, j=1..n)$n=0..100])[]; # Alois P. Heinz, Oct 17 2024
for(k=0, 1e5, if(ispolygonal(m=k*(k+1)*(2*k-1)/2, 8), print1(m", ")))
From _Bernard Schott_, Dec 23 2012: (Start) If S(n) = n^2 and T(m) = m*(m+1)*(m+2)/6, then -> S(1)= T(1) = 1; -> S(2)= T(2) = 4; -> S(140) = T(48) = 19600. (End)
Select[Rest[FoldList[Plus, 0, Rest[FoldList[Plus, 0, Range[50000]]]]], IntegerQ[Sqrt[ # ]]&] Intersection[Binomial[# + 2, 3]&/@Range[0, 10000], Range[0,409000]^2] (* Harvey P. Dale, Feb 01 2011 *)
4900 is a term because it is both the 70th square and the 24th square pyramidal number.
The eighth tetrahedral number is 120, which is also a triangular number. Hence, 8 belongs to the sequence.
Select[Table[{n,(n(n+1)(n+2))/6},{n,0,35}],OddQ[Sqrt[1+8#[[2]]]]&][[;;,1]] (* Harvey P. Dale, May 31 2024 *)
for(n=0,34,if(ispolygonal(n*(n+1)*(n+2)/6,3),print1(n", "))) \\ Charles R Greathouse IV, Apr 07 2013
for(k=0, 1e5, if(ispolygonal(m=k*(k+1)*(3*k-2)/2, 11), print1(m", ")))
Comments