cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A102461 Numbers n such that binomial(n,2) is in A027568.

Original entry on oeis.org

1, 2, 5, 16, 56, 120
Offset: 1

Views

Author

N. J. A. Sloane, Sep 06 2008

Keywords

Crossrefs

Cf. A027568.

A102349 Numbers n such that binomial(n+1,2) is in A027568.

Original entry on oeis.org

0, 1, 4, 15, 55, 119
Offset: 1

Views

Author

N. J. A. Sloane, Sep 06 2008

Keywords

Crossrefs

Cf. A027568.

A102772 Numbers n such that binomial(n,3) is in A027568.

Original entry on oeis.org

1, 3, 5, 10, 22, 36
Offset: 1

Views

Author

N. J. A. Sloane, Sep 06 2008

Keywords

Crossrefs

Cf. A027568.

A001110 Square triangular numbers: numbers that are both triangular and square.

Original entry on oeis.org

0, 1, 36, 1225, 41616, 1413721, 48024900, 1631432881, 55420693056, 1882672131025, 63955431761796, 2172602007770041, 73804512832419600, 2507180834294496361, 85170343853180456676, 2893284510173841030625, 98286503002057414584576, 3338847817559778254844961, 113422539294030403250144100
Offset: 0

Views

Author

Keywords

Comments

Satisfies a recurrence of S_r type for r=36: 0, 1, 36 and a(n-1)*a(n+1)=(a(n)-1)^2. First observed by Colin Dickson in alt.math.recreational, Mar 07 2004. - Rainer Rosenthal, Mar 14 2004
For every n, a(n) is the first of three triangular numbers in geometric progression. The third number in the progression is a(n+1). The middle triangular number is sqrt(a(n)*a(n+1)). Chen and Fang prove that four distinct triangular numbers are never in geometric progression. - T. D. Noe, Apr 30 2007
The sum of any two terms is never equal to a Fermat number. - Arkadiusz Wesolowski, Feb 14 2012
Conjecture: No a(2^k), where k is a nonnegative integer, can be expressed as a sum of a positive square number and a positive triangular number. - Ivan N. Ianakiev, Sep 19 2012
For n=2k+1, A010888(a(n))=1 and for n=2k, k > 0, A010888(a(n))=9. - Ivan N. Ianakiev, Oct 12 2013
For n > 0, these are the triangular numbers which are the sum of two consecutive triangular numbers, for instance 36 = 15 + 21 and 1225 = 595 + 630. - Michel Marcus, Feb 18 2014
The sequence is the case P1 = 36, P2 = 68, Q = 1 of the 3-parameter family of 4th order linear divisibility sequences found by Williams and Guy. - Peter Bala, Apr 03 2014
For n=2k, k > 0, a(n) is divisible by 12 and is therefore abundant. I conjecture that for n=2k+1 a(n) is deficient [true for k up to 43 incl.]. - Ivan N. Ianakiev, Sep 30 2014
The conjecture is true for all k > 0 because: For n=2k+1, k > 0, a(n) is odd. If a(n) is a prime number, it is deficient; otherwise a(n) has one or two distinct prime factors and is therefore deficient again. So for n=2k+1, k > 0, a(n) is deficient. - Muniru A Asiru, Apr 13 2016
Numbers k for which A139275(k) is a perfect square. - Bruno Berselli, Jan 16 2018

Examples

			a(2) = ((17 + 12*sqrt(2))^2 + (17 - 12*sqrt(2))^2 - 2)/32 = (289 + 24*sqrt(2) + 288 + 289 - 24*sqrt(2) + 288 - 2)/32 = (578 + 576 - 2)/32 = 1152/32 = 36 and 6^2 = 36 = 8*9/2 => a(2) is both the 6th square and the 8th triangular number.
		

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 193.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 38, 204.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923; see Vol. 2, p. 10.
  • Martin Gardner, Time Travel and other Mathematical Bewilderments, Freeman & Co., 1988, pp. 16-17.
  • Miodrag S. Petković, Famous Puzzles of Great Mathematicians, Amer. Math. Soc. (AMS), 2009, p. 64.
  • J. H. Silverman, A Friendly Introduction to Number Theory, Prentice Hall, 2001, p. 196.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 257-259.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 93.

Crossrefs

Other S_r type sequences are S_4=A000290, S_5=A004146, S_7=A054493, S_8=A001108, S_9=A049684, S_20=A049683, S_36=this sequence, S_49=A049682, S_144=A004191^2.
Cf. A001014; intersection of A000217 and A000290; A010052(a(n))*A010054(a(n)) = 1.
Cf. A005214, A054686, A232847 and also A233267 (reveals an interesting divisibility pattern for this sequence).
Cf. A240129 (triangular numbers that are squares of triangular numbers), A100047.
See A229131, A182334, A299921 for near-misses.

Programs

  • Haskell
    a001110 n = a001110_list !! n
    a001110_list = 0 : 1 : (map (+ 2) $
       zipWith (-) (map (* 34) (tail a001110_list)) a001110_list)
    -- Reinhard Zumkeller, Oct 12 2011
    
  • Magma
    [n le 2 select n-1 else Floor((6*Sqrt(Self(n-1)) - Sqrt(Self(n-2)))^2): n in [1..20]]; // Vincenzo Librandi, Jul 22 2015
  • Maple
    a:=17+12*sqrt(2); b:=17-12*sqrt(2); A001110:=n -> expand((a^n + b^n - 2)/32); seq(A001110(n), n=0..20); # Jaap Spies, Dec 12 2004
    A001110:=-(1+z)/((z-1)*(z**2-34*z+1)); # Simon Plouffe in his 1992 dissertation
  • Mathematica
    f[n_]:=n*(n+1)/2; lst={}; Do[If[IntegerQ[Sqrt[f[n]]],AppendTo[lst,f[n]]],{n,0,10!}]; lst (* Vladimir Joseph Stephan Orlovsky, Feb 12 2010 *)
    Table[(1/8) Round[N[Sinh[2 n ArcSinh[1]]^2, 100]], {n, 0, 20}] (* Artur Jasinski, Feb 10 2010 *)
    Transpose[NestList[Flatten[{Rest[#],34Last[#]-First[#]+2}]&, {0,1},20]][[1]]  (* Harvey P. Dale, Mar 25 2011 *)
    LinearRecurrence[{35, -35, 1}, {0, 1, 36}, 20] (* T. D. Noe, Mar 25 2011 *)
    LinearRecurrence[{6,-1},{0,1},20]^2 (* Harvey P. Dale, Oct 22 2012 *)
    (* Square = Triangular = Triangular = A001110 *)
    ChebyshevU[#-1,3]^2==Binomial[ChebyshevT[#/2,3]^2,2]==Binomial[(1+ChebyshevT[#,3])/2,2]=={1,36,1225,41616,1413721}[[#]]&@Range[5]
    True (* Bill Gosper, Jul 20 2015 *)
    L=0;r={};Do[AppendTo[r,L];L=1+17*L+6*Sqrt[L+8*L^2],{i,1,19}];r (* Kebbaj Mohamed Reda, Aug 02 2023 *)
  • PARI
    a=vector(100);a[1]=1;a[2]=36;for(n=3,#a,a[n]=34*a[n-1]-a[n-2]+2);a \\ Charles R Greathouse IV, Jul 25 2011
    
  • Scheme
    ;; With memoizing definec-macro from Antti Karttunen's IntSeq-library.
    (definec (A001110 n) (if (< n 2) n (+ 2 (- (* 34 (A001110 (- n 1))) (A001110 (- n 2))))))
    ;; Antti Karttunen, Dec 06 2013
    
  • Scheme
    ;; For testing whether n is in this sequence:
    (define (inA001110? n) (and (zero? (A068527 n)) (inA001109? (floor->exact (sqrt n)))))
    (define (inA001109? n) (= (* 8 n n) (floor->exact (* (sqrt 8) n (ceiling->exact (* (sqrt 8) n))))))
    ;; Antti Karttunen, Dec 06 2013
    

Formula

a(0) = 0, a(1) = 1; for n >= 2, a(n) = 34 * a(n-1) - a(n-2) + 2.
G.f.: x*(1 + x) / (( 1 - x )*( 1 - 34*x + x^2 )).
a(n-1) * a(n+1) = (a(n)-1)^2. - Colin Dickson, posting to alt.math.recreational, Mar 07 2004
If L is a square-triangular number, then the next one is 1 + 17*L + 6*sqrt(L + 8*L^2). - Lekraj Beedassy, Jun 27 2001
a(n) - a(n-1) = A046176(n). - Sophie Kuo (ejiqj_6(AT)yahoo.com.tw), May 27 2006
a(n) = A001109(n)^2 = A001108(n)*(A001108(n)+1)/2 = (A000129(n)*A001333(n))^2 = (A000129(n)*(A000129(n) + A000129(n-1)))^2. - Henry Bottomley, Apr 19 2000
a(n) = (((17+12*sqrt(2))^n) + ((17-12*sqrt(2))^n)-2)/32. - Bruce Corrigan (scentman(AT)myfamily.com), Oct 26 2002
Limit_{n->oo} a(n+1)/a(n) = 17 + 12*sqrt(2). See UWC problem link and solution. - Jaap Spies, Dec 12 2004
From Antonio Alberto Olivares, Nov 07 2003: (Start)
a(n) = 35*(a(n-1) - a(n-2)) + a(n-3);
a(n) = -1/16 + ((-24 + 17*sqrt(2))/2^(11/2))*(17 - 12*sqrt(2))^(n-1) + ((24 + 17*sqrt(2))/2^(11/2))*(17 + 12*sqrt(2))^(n-1). (End)
a(n+1) = (17*A029547(n) - A091761(n) - 1)/16. - R. J. Mathar, Nov 16 2007
a(n) = A001333^2 * A000129^2 = A000129(2*n)^2/4 = binomial(A001108,2). - Bill Gosper, Jul 28 2008
Closed form (as square = triangular): ( (sqrt(2)+1)^(2*n)/(4*sqrt(2)) - (1-sqrt(2))^(2*n)/(4*sqrt(2)) )^2 = (1/2) * ( ( (sqrt(2)+1)^n / 2 - (sqrt(2)-1)^n / 2 )^2 + 1 )*( (sqrt(2)+1)^n / 2 - (sqrt(2)-1)^n / 2 )^2. - Bill Gosper, Jul 25 2008
a(n) = (1/8)*(sinh(2*n*arcsinh(1)))^2. - Artur Jasinski, Feb 10 2010
a(n) = floor((17 + 12*sqrt(2))*a(n-1)) + 3 = floor(3*sqrt(2)/4 + (17 + 12*sqrt(2))*a(n-1) + 1). - Manuel Valdivia, Aug 15 2011
a(n) = (A011900(n) + A001652(n))^2; see the link about the generalized proof of square triangular numbers. - Kenneth J Ramsey, Oct 10 2011
a(2*n+1) = A002315(n)^2*(A002315(n)^2 + 1)/2. - Ivan N. Ianakiev, Oct 10 2012
a(2*n+1) = ((sqrt(t^2 + (t+1)^2))*(2*t+1))^2, where t = (A002315(n) - 1)/2. - Ivan N. Ianakiev, Nov 01 2012
a(2*n) = A001333(2*n)^2 * (A001333(2*n)^2 - 1)/2, and a(2*n+1) = A001333(2*n+1)^2 * (A001333(2*n+1)^2 + 1)/2. The latter is equivalent to the comment above from Ivan using A002315, which is a bisection of A001333. Using A001333 shows symmetry and helps show that a(n) are both "squares of triangular" and "triangular of squares". - Richard R. Forberg, Aug 30 2013
a(n) = (A001542(n)/2)^2.
From Peter Bala, Apr 03 2014: (Start)
a(n) = (T(n,17) - 1)/16, where T(n,x) denotes the Chebyshev polynomial of the first kind.
a(n) = U(n-1,3)^2, for n >= 1, where U(n,x) denotes the Chebyshev polynomial of the second kind.
a(n) = the bottom left entry of the 2 X 2 matrix T(n, M), where M is the 2 X 2 matrix [0, -17; 1, 18].
See the remarks in A100047 for the general connection between Chebyshev polynomials of the first kind and 4th-order linear divisibility sequences. (End)
a(n) = A096979(2*n-1) for n > 0. - Ivan N. Ianakiev, Jun 21 2014
a(n) = (6*sqrt(a(n-1)) - sqrt(a(n-2)))^2. - Arkadiusz Wesolowski, Apr 06 2015
From Daniel Poveda Parrilla, Jul 16 2016 and Sep 21 2016: (Start)
a(n) = A000290(A002965(2*n)*A002965(2*n + 1)) (after Hugh Darwen).
a(n) = A000217(2*(A000129(n))^2 - (A000129(n) mod 2)).
a(n) = A000129(n)^4 + Sum_{k=0..(A000129(n)^2 - (A000129(n) mod 2))} 2*k. This formula can be proved graphically by taking the corresponding triangle of a square triangular number and cutting both acute angles, one level at a time (sum of consecutive even numbers), resulting in a square of squares (4th powers).
a(n) = A002965(2*n)^4 + Sum_{k=A002965(2*n)^2..A002965(2*n)*A002965(2*n + 1) - 1} 2*k + 1. This formula takes an equivalent sum of consecutives, but odd numbers. (End)
E.g.f.: (exp((17-12*sqrt(2))*x) + exp((17+12*sqrt(2))*x) - 2*exp(x))/32. - Ilya Gutkovskiy, Jul 16 2016

A039596 Numbers that are simultaneously triangular and square pyramidal.

Original entry on oeis.org

0, 1, 55, 91, 208335
Offset: 1

Views

Author

Keywords

Comments

Equivalent to 0^2 + 1^2 + 2^2 + 3^2 + ... + r^2 = 0 + 1 + 2 + 3 + ... + s = n for some r and s.

Examples

			1^2 + 2^2 + 3^2 + 4^2 + 5^2 = 1 + 2 + 3 + ... + 10 = 55, so 55 is in the sequence.
		

References

  • Joe Roberts, Lure of the Integers, page 245 (entry for 645).
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, p. 108.

Crossrefs

Intersection of A000217 and A000330.

Programs

  • Maple
    q:= n-> issqr(8*n+1):
    select(q, [sum(j^2, j=1..n)$n=0..100])[];  # Alois P. Heinz, Oct 17 2024

Extensions

Additional comments from Jud McCranie, Mar 19 2000
Zero inserted by Daniel Mondot, Sep 07 2023

A344376 Numbers that are both octagonal numbers (A000567) and octagonal pyramidal numbers (A002414).

Original entry on oeis.org

0, 1, 1045, 5985, 123395663059845, 774611255177760
Offset: 1

Views

Author

Seiichi Manyama, May 16 2021

Keywords

Comments

Terms correspond to integral points on an elliptic curve, which allows all of them to be found efficiently. - Max Alekseyev, Feb 19 2024

Crossrefs

Intersection of A000567 and A002414.
Cf. A378361 (octagonal indices), A378918 (octagonal pyramidal indices).

Programs

  • PARI
    for(k=0, 1e5, if(ispolygonal(m=k*(k+1)*(2*k-1)/2, 8), print1(m", ")))

Extensions

Keywords 'fini' and 'full' added by Max Alekseyev, Feb 19 2024

A003556 Numbers that are both square and tetrahedral.

Original entry on oeis.org

0, 1, 4, 19600
Offset: 1

Views

Author

Keywords

Comments

A. J. J. Meyl proved in 1878 that only 1, 4 and 19600 are both square and tetrahedral. See link. [Bernard Schott, Dec 23 2012]

Examples

			From _Bernard Schott_, Dec 23 2012: (Start)
If S(n) = n^2 and T(m) = m*(m+1)*(m+2)/6, then
-> S(1)= T(1) = 1;
-> S(2)= T(2) = 4;
-> S(140) = T(48) = 19600. (End)
		

References

  • D. Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, 600.
  • D. Wells, The Penguin Dictionary of Curious and Interesting Numbers, p. 165 (Rev. ed. 1997).

Crossrefs

Intersection of A000290 and A000292.

Programs

  • Mathematica
    Select[Rest[FoldList[Plus, 0, Rest[FoldList[Plus, 0, Range[50000]]]]], IntegerQ[Sqrt[ # ]]&]
    Intersection[Binomial[# + 2, 3]&/@Range[0, 10000], Range[0,409000]^2] (* Harvey P. Dale, Feb 01 2011 *)

A373711 Numbers that are simultaneously k-gonal and k-gonal pyramidal for some k >= 3.

Original entry on oeis.org

0, 1, 10, 120, 175, 441, 946, 1045, 1540, 4900, 5985, 7140, 23001, 23725, 48280, 195661, 245905, 314755, 801801, 975061, 1169686, 3578401, 10680265, 27453385, 55202400, 63016921, 101337426, 132361021, 197427385, 258815701, 432684460, 477132085, 837244045
Offset: 1

Views

Author

Kelvin Voskuijl, Jun 14 2024

Keywords

Comments

Matt Parker calls these numbers cannonball numbers, after the cannonball problem involving finding a number both square and square pyramidal.
If m==2 (mod 3), the m-gonal number A057145(m,(m^3-6*m^2+3*m+19)/9) = (m^2-4*m-2)*(m^2-4*m+1)*(m^3-6*m^2+3*m+19)/162 = A344410((m-2)/3) is a term. See comment in A027696. - Pontus von Brömssen, Dec 09 2024

Examples

			4900 is a term because it is both the 70th square and the 24th square pyramidal number.
		

Crossrefs

Formula

a(n) = A057145(A379973(n),A379974(n)) = A080851(A379973(n)-2,A379975(n)-1). - Pontus von Brömssen, Jan 09 2025

Extensions

a(13)-a(33) from Pontus von Brömssen, Dec 08 2024

A224421 The indices of tetrahedral numbers that are also triangular.

Original entry on oeis.org

0, 1, 3, 8, 20, 34
Offset: 0

Views

Author

Tanya Khovanova, Apr 06 2013

Keywords

Examples

			The eighth tetrahedral number is 120, which is also a triangular number. Hence, 8 belongs to the sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Table[{n,(n(n+1)(n+2))/6},{n,0,35}],OddQ[Sqrt[1+8#[[2]]]]&][[;;,1]] (* Harvey P. Dale, May 31 2024 *)
  • PARI
    for(n=0,34,if(ispolygonal(n*(n+1)*(n+2)/6,3),print1(n", "))) \\ Charles R Greathouse IV, Apr 07 2013

A344377 Numbers that are both 11-gonal numbers (A051682) and 11-gonal pyramidal numbers (A007586).

Original entry on oeis.org

0, 1, 23725, 1519937678700, 7248070597636
Offset: 1

Views

Author

Seiichi Manyama, May 17 2021

Keywords

Comments

Intersection of A051682 and A007586.

Crossrefs

Programs

  • PARI
    for(k=0, 1e5, if(ispolygonal(m=k*(k+1)*(3*k-2)/2, 11), print1(m", ")))
Showing 1-10 of 19 results. Next