A027568
Numbers that are both triangular and tetrahedral.
Original entry on oeis.org
0, 1, 10, 120, 1540, 7140
Offset: 1
- J.-M. De Koninck, Ces nombres qui nous fascinent, Ellipses (Paris), 2008 (entry 10, page 3; entry 120, page 41).
- L. J. Mordell, Diophantine Equations, Ac. Press, page 258.
- P. Odifreddi, Il museo dei numeri, Rizzoli, 2014, page 224.
- J. Roberts, The Lure of the Integers, page 53.
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 21.
- E. T. Avanesov, Solution of a problem on figurate numbers (in Russian), Acta Arith. 12 1966/1967 pages 409-420.
- Patrick De Geest, Palindromic Tetrahedrals
- M. Gardner, Letter to N. J. A. Sloane, circa Aug 11 1980, concerning A001110, A027568, A039596, etc.
- J. Roberts, The Lure of the Integers, pp. 53. (Annotated scanned copy)
- Eric Weisstein's World of Mathematics, Tetrahedral Number
-
{seq(binomial(i,3),i=0..100000) } intersect {seq(binomial(k,2), k= 0..100000)}; # Zerinvary Lajos, Apr 26 2008
-
With[{trno=Accumulate[Range[0,1000]]},Intersection[trno,Accumulate[ trno]]] (* Harvey P. Dale, May 25 2014 *)
-
for(n=0,1e3,if(ispolygonal(t=n*(n+1)*(n+2)/6,3),print1(t", "))) \\ Charles R Greathouse IV, Apr 07 2013
A303615
Complete list of solutions to y^2 + y = x^3 - 525x + 10156; sequence gives x values.
Original entry on oeis.org
-29, -25, -20, -14, -5, 5, 14, 16, 20, 25, 49, 70, 79, 130, 250, 305, 400, 695, 1555, 1645, 18895
Offset: 1
a(6) = 5: 5^3 - 525 * 5 + 10156 = 7656 = 88 * 87.
A301515
Complete list of integers x > 1 such that x^2 - x = y^q - y, where q is an odd prime and y is a prime power.
Original entry on oeis.org
3, 6, 16, 91, 280
Offset: 1
a(3) = 16: 16^2 - 16 = 240 = 3^5 - 3.
- Yann Bugeaud, Maurice Mignotte, Samir Siksek, Michael Stoll and Szabolcs Tengely, Integral points on hyperelliptic curves, Algebra Number Theory 2 (2008), 859-885.
- Daniel C. Fielder and Cecil O. Alford, Observations from computer experiments on an integer equation, Applications of Fibonacci numbers, edited by G. E. Bergum, A. N. Philippou and A. F. Horadam, vol. 7, pp. 93-103.
- M. Mignotte and A. Pethő, On the diophantine equation x^p - x = y^q - y, Publ. Mat. 43 (1999), 207-216.
- L. J. Mordell, On the integer solutions of y(y+1)=x(x+1)(x+2), Pacific J. Math. 13 (1963), 1347-1351.
Cf.
A102461 (the complete list of solutions x to (x^2 - x)/2 = (y^3 - y)/6).
-
r[x_, q_] := {x, y, q} /. {ToRules @ Reduce[y >= 2 && x^2 - x == y^q - y, y, Integers]};
r[x_] := Select[Table[r[x, q], {q, NextPrime[Log[2, x^2 - x + 2]]}] /. {{a_, b_, c_}} -> {a, b, c}, PrimeNu[#[[2]]]==1 && #[[3]] > 2&];
T = Table[r[x], {x, 2, 300}];
For[k = 1, k <= Length[T], k++, t = T[[k]]; If[t != {}, Print["x = ", t[[1, 1]], ", y = ", t[[1, 2]], ", q = ", t[[1, 3]]]]] (* Jean-François Alcover, Dec 17 2018 *)
A317053
Complete list of solutions to y^2 + y = x^3 - 525x + 10156 with y > 0; sequence gives positive y values.
Original entry on oeis.org
31, 74, 76, 87, 112, 121, 319, 562, 679, 1462, 3937, 5312, 7987, 18312, 61312, 66712, 2597287
Offset: 1
a(1) = 31: (-29)^3 - 525 * (-29) + 10156 = 996 = 31 * 32.
-
EllipticCurve([0, 0, 1, -525, 10156]).integral_points()
Showing 1-4 of 4 results.
Comments