cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027612 Numerator of 1/n + 2/(n-1) + 3/(n-2) + ... + (n-1)/2 + n.

Original entry on oeis.org

1, 5, 13, 77, 87, 223, 481, 4609, 4861, 55991, 58301, 785633, 811373, 835397, 1715839, 29889983, 30570663, 197698279, 201578155, 41054655, 13920029, 325333835, 990874363, 25128807667, 25472027467, 232222818803, 235091155703, 6897956948587, 6975593267347
Offset: 1

Views

Author

Glen Burch (gburch(AT)erols.com)

Keywords

Comments

Numerator of a second-order harmonic number H(n, (2)) = Sum_{k=1..n} HarmonicNumber(k). - Alexander Adamchuk, Apr 12 2006
p divides a(p-3) for prime p > 3. - Alexander Adamchuk, Jul 06 2006
Denominator is A027611(n+1). p divides a(p-3) for prime p > 3. - Alexander Adamchuk, Jul 26 2006
a(n) = A213998(n,n-2) for n > 1. - Reinhard Zumkeller, Jul 03 2012

Crossrefs

Programs

  • Haskell
    import Data.Ratio ((%), numerator)
    a027612 n = numerator $ sum $ zipWith (%) [1 .. n] [n, n-1 .. 1]
    -- Reinhard Zumkeller, Jul 03 2012
    
  • Magma
    [Numerator((&+[j/(n-j+1): j in [1..n]])): n in [1..30]]; // G. C. Greubel, Aug 23 2022
    
  • Maple
    a := n -> numer(add((n+1-j)/j, j=1..n));
    seq(a(n), n = 1..29); # Peter Luschny, May 12 2023
  • Mathematica
    Numerator[Table[Sum[Sum[1/i,{i,1,k}],{k,1,n}],{n,1,30}]] (* Alexander Adamchuk, Apr 12 2006 *)
    Numerator[Table[Sum[k/(n-k+1),{k,1,n}],{n,1,50}]] (* Alexander Adamchuk, Jul 26 2006 *)
  • PARI
    a(n) = numerator(sum(k=1, n, k/(n-k+1))); \\ Michel Marcus, Jul 14 2018
    
  • SageMath
    [numerator(n*(harmonic_number(n+1) - 1)) for n in (1..30)] # G. C. Greubel, Aug 23 2022

Formula

From Vladeta Jovovic, Sep 02 2002: (Start)
a(n) = numerators of coefficients in expansion of -log(1-x)/(1-x)^2.
a(n) = numerators of (n+1)*(harmonic(n+1) - 1).
a(n) = numerators of (n+1)*(Psi(n+2) + Euler-gamma - 1). (End)
a(n) = numerator( Sum_{k=1..n} Sum_{i=1..k} 1/i ). - Alexander Adamchuk, Apr 12 2006
a(n) = numerator( Sum_{k=1..n} k/(n-k+1) ). - Alexander Adamchuk, Jul 26 2006
a(n) = numerator of integral_{x=1..n+1} floor((n+1)/x). - Jean-François Alcover, Jun 18 2013