A027612 Numerator of 1/n + 2/(n-1) + 3/(n-2) + ... + (n-1)/2 + n.
1, 5, 13, 77, 87, 223, 481, 4609, 4861, 55991, 58301, 785633, 811373, 835397, 1715839, 29889983, 30570663, 197698279, 201578155, 41054655, 13920029, 325333835, 990874363, 25128807667, 25472027467, 232222818803, 235091155703, 6897956948587, 6975593267347
Offset: 1
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
- Eric Weisstein's World of Mathematics, Harmonic Number.
Programs
-
Haskell
import Data.Ratio ((%), numerator) a027612 n = numerator $ sum $ zipWith (%) [1 .. n] [n, n-1 .. 1] -- Reinhard Zumkeller, Jul 03 2012
-
Magma
[Numerator((&+[j/(n-j+1): j in [1..n]])): n in [1..30]]; // G. C. Greubel, Aug 23 2022
-
Maple
a := n -> numer(add((n+1-j)/j, j=1..n)); seq(a(n), n = 1..29); # Peter Luschny, May 12 2023
-
Mathematica
Numerator[Table[Sum[Sum[1/i,{i,1,k}],{k,1,n}],{n,1,30}]] (* Alexander Adamchuk, Apr 12 2006 *) Numerator[Table[Sum[k/(n-k+1),{k,1,n}],{n,1,50}]] (* Alexander Adamchuk, Jul 26 2006 *)
-
PARI
a(n) = numerator(sum(k=1, n, k/(n-k+1))); \\ Michel Marcus, Jul 14 2018
-
SageMath
[numerator(n*(harmonic_number(n+1) - 1)) for n in (1..30)] # G. C. Greubel, Aug 23 2022
Formula
From Vladeta Jovovic, Sep 02 2002: (Start)
a(n) = numerators of coefficients in expansion of -log(1-x)/(1-x)^2.
a(n) = numerators of (n+1)*(harmonic(n+1) - 1).
a(n) = numerators of (n+1)*(Psi(n+2) + Euler-gamma - 1). (End)
a(n) = numerator( Sum_{k=1..n} Sum_{i=1..k} 1/i ). - Alexander Adamchuk, Apr 12 2006
a(n) = numerator( Sum_{k=1..n} k/(n-k+1) ). - Alexander Adamchuk, Jul 26 2006
a(n) = numerator of integral_{x=1..n+1} floor((n+1)/x). - Jean-François Alcover, Jun 18 2013
Comments