cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027670 Number of different bracelets with 6 beads of at most n colors, allowing turning over.

Original entry on oeis.org

0, 1, 13, 92, 430, 1505, 4291, 10528, 23052, 46185, 86185, 151756, 254618, 410137, 638015, 963040, 1415896, 2034033, 2862597, 3955420, 5376070, 7198961, 9510523, 12410432, 16012900, 20448025, 25863201
Offset: 0

Views

Author

Keywords

Comments

Number of ways to color vertices of a hexagon using <= n colors, allowing rotations and reflections.
Equivalently, the number of distinct hexagons that can be tiled using equilateral triangles of n different colors. - Lekraj Beedassy, Dec 29 2007
Number of ways to color slots of a 2 X 3 matrix with the respective symmetric groups S_2 and S_3 acting on the rows / columns. - Marko Riedel, Jan 26 2017

References

  • J. L. Fisher, Application-Oriented Algebra (1977), ISBN 0-7002-2504-8, circa p. 215.
  • M. Gardner, New Mathematical Diversions from Scientific American, Simon and Schuster, New York, 1966, pages 245-246.
  • J.-P. Delahaye, Le miraculeux "lemme de Burnside"; Groupes et orbites, pp. 146-147, in 'Pour la Science' (French edition of 'Scientific American'), No. 350, December 2006, Paris.

Crossrefs

Cf. A006565.

Programs

  • Magma
    I:=[0, 1, 13, 92, 430, 1505, 4291]; [n le 7 select I[n] else 7*Self(n-1)-21*Self(n-2)+35*Self(n-3)-35*Self(n-4)+21*Self(n-5)-7*Self(n-6)+Self(n-7): n in [1..30]]; // Vincenzo Librandi, Apr 22 2012
  • Maple
    A027670 := n-> (n^6+3*n^4+4*n^3+2*n^2+2*n)/12;
  • Mathematica
    (* First do *) Needs["Combinatorica`"] (* then *) Table[ CycleIndex[ DihedralGroup[6], t] /. Table[ t[i] -> n, {i, 1, 6}], {n, 0, 26}]
    CoefficientList[Series[x*(1+x)*(1+5*x+17*x^2+7*x^3)/(1-x)^7,{x,0,30}],x] (* Vincenzo Librandi, Apr 22 2012 *)
    LinearRecurrence[{7,-21,35,-35,21,-7,1},{0,1,13,92,430,1505,4291},30] (* Harvey P. Dale, Mar 12 2018 *)
  • PARI
    a(n)=n*(n+1)*(n^4-n^3+4*n^2+2)/12 \\ Charles R Greathouse IV, Feb 24 2011
    

Formula

1/12*n*(n+1)*(n^4 - n^3 + 4*n^2 + 2).
G.f.: x*(1+x)*(1 + 5*x + 17*x^2 + 7*x^3)/(1-x)^7. - Colin Barker, Jan 29 2012
Cycle index: s1^6/12 + s2^3/3 + s3^2/6 + s1^2 * s2^2/4 + s6/6, -Marko Riedel, Jan 26 2017

Extensions

Name changed to reflect distinction between necklaces (cyclic) and bracelets (dihedral) by Marko Riedel, Jan 27 2017