A081720 Triangle T(n,k) read by rows, giving number of bracelets (turnover necklaces) with n beads of k colors (n >= 1, 1 <= k <= n).
1, 1, 3, 1, 4, 10, 1, 6, 21, 55, 1, 8, 39, 136, 377, 1, 13, 92, 430, 1505, 4291, 1, 18, 198, 1300, 5895, 20646, 60028, 1, 30, 498, 4435, 25395, 107331, 365260, 1058058, 1, 46, 1219, 15084, 110085, 563786, 2250311, 7472984, 21552969, 1, 78, 3210, 53764, 493131, 3037314
Offset: 1
Examples
1; (A000027) 1, 3; (A000217) 1, 4, 10; (A000292) 1, 6, 21, 55; (A002817) 1, 8, 39, 136, 377; (A060446) 1, 13, 92, 430, 1505, 4291; (A027670) 1, 18, 198, 1300, 5895, 20646, 60028; (A060532) 1, 30, 498, 4435, 25395, 107331, 365260, 1058058; (A060560) ... For example, when n=k=3, we have the following T(3,3)=10 bracelets of 3 beads using up to 3 colors: 000, 001, 002, 011, 012, 022, 111, 112, 122, and 222. (Note that 012 = 120 = 201 = 210 = 102 = 021.) _Petros Hadjicostas_, Nov 29 2017
References
- N. Zagaglia Salvi, Ordered partitions and colourings of cycles and necklaces, Bull. Inst. Combin. Appl., 27 (1999), 37-40.
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275
- Yi Hu, Numerical Transfer Matrix Method of Next-nearest-neighbor Ising Models, Master's Thesis, Duke Univ. (2021).
- Yi Hu and Patrick Charbonneau, Numerical transfer matrix study of frustrated next-nearest-neighbor Ising models on square lattices, arXiv:2106.08442 [cond-mat.stat-mech], 2021, cites the 4th column.
Crossrefs
Programs
-
Maple
A081720 := proc(n, k) local d, t1; t1 := 0; if n mod 2 = 0 then for d from 1 to n do if n mod d = 0 then t1 := t1+numtheory[phi](d)*k^(n/d); end if; end do: (t1+(n/2)*(1+k)*k^(n/2)) /(2*n) ; else for d from 1 to n do if n mod d = 0 then t1 := t1+numtheory[phi](d)*k^(n/d); end if; end do; (t1+n*k^((n+1)/2)) /(2*n) ; end if; end proc: seq(seq(A081720(n,k),k=1..n),n=1..10) ;
-
Mathematica
t[n_, k_] := (For[t1 = 0; d = 1, d <= n, d++, If[Mod[n, d] == 0, t1 = t1 + EulerPhi[d]*k^(n/d)]]; If[EvenQ[n], (t1 + (n/2)*(1 + k)*k^(n/2))/(2*n), (t1 + n*k^((n + 1)/2))/(2*n)]); Table[t[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Sep 13 2012, after Maple, updated Nov 02 2017 *) Needs["Combinatorica`"]; Table[Table[NumberOfNecklaces[n,k,Dihedral],{k,1,n}],{n,1,8}]//Grid (* Geoffrey Critzer, Oct 07 2012, after code by T. D. Noe in A027671 *)
Formula
See Maple code.
From Petros Hadjicostas, Nov 29 2017: (Start)
T(n,k) = ((1+k)*k^{n/2}/2 + (1/n)*Sum_{d|n} phi(n/d)*k^d)/2, if n is even, and = (k^{(n+1)/2} + (1/n)*Sum_{d|n} phi(n/d)*k^d)/2, if n is odd.
G.f. for column k: (1/2)*((k*x+k*(k+1)*x^2/2)/(1-k*x^2) - Sum_{n>=1} (phi(n)/n)*log(1-k*x^n)) provided we chop off the Taylor expansion starting at x^k (and ignore all the terms x^n with n
(End)
2*n*T(n,k) = A054618(n,k)+n*(1+k)^(n/2)/2 if n even, = A054618(n,k)+n*k^((n+1)/2) if n odd. - R. J. Mathar, Jan 23 2022
Extensions
Name edited by Petros Hadjicostas, Nov 29 2017
A208544 T(n,k) = Number of n-bead necklaces of k colors allowing reversal, with no adjacent beads having the same color.
1, 2, 0, 3, 1, 0, 4, 3, 0, 0, 5, 6, 1, 1, 0, 6, 10, 4, 6, 0, 0, 7, 15, 10, 21, 3, 1, 0, 8, 21, 20, 55, 24, 13, 0, 0, 9, 28, 35, 120, 102, 92, 9, 1, 0, 10, 36, 56, 231, 312, 430, 156, 30, 0, 0, 11, 45, 84, 406, 777, 1505, 1170, 498, 29, 1, 0, 12, 55, 120, 666, 1680, 4291, 5580, 4435
Offset: 1
Comments
Table starts
.1.2..3...4....5.....6......7......8.......9......10......11.......12.......13
.0.1..3...6...10....15.....21.....28......36......45......55.......66.......78
.0.0..1...4...10....20.....35.....56......84.....120.....165......220......286
.0.1..6..21...55...120....231....406.....666....1035....1540.....2211.....3081
.0.0..3..24..102...312....777...1680....3276....5904....9999....16104....24882
.0.1.13..92..430..1505...4291..10528...23052...46185...86185...151756...254618
.0.0..9.156.1170..5580..19995..58824..149796..341640..714285..1391940..2559414
.0.1.30.498.4435.25395.107331.365260.1058058.2707245.6278140.13442286.26942565
Examples
All solutions for n=7, k=3: ..1....1....1....1....1....1....1....1....1 ..2....2....2....2....2....2....2....2....2 ..3....3....1....1....3....1....3....1....3 ..1....1....2....2....1....2....2....3....2 ..2....3....3....3....3....1....3....1....3 ..3....1....1....2....2....2....2....2....1 ..2....3....3....3....3....3....3....3....3
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275 (first 264 terms from R. H. Hardin)
Crossrefs
Programs
-
Mathematica
T[n_, k_] := If[n == 1, k, (DivisorSum[n, EulerPhi[n/#]*(k-1)^#&]/n + If[ OddQ[n], 1-k, k*(k-1)^(n/2)/2])/2]; Table[T[n-k+1, k], {n, 1, 12}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Oct 30 2017, after Andrew Howroyd *)
-
PARI
T(n, k) = if(n==1, k, (sumdiv(n, d, eulerphi(n/d)*(k-1)^d)/n + if(n%2, 1-k, k*(k-1)^(n/2)/2))/2); for(n=1, 10, for(k=1, 10, print1(T(n, k), ", ")); print) \\ Andrew Howroyd, Oct 14 2017
Formula
T(2n+1,k) = A208535(2n+1,k)/2 for n > 0, T(2n,k) = (A208535(2n,k) + (k*(k-1)^n)/2)/2. - Andrew Howroyd, Mar 12 2017
Empirical for row n:
n=1: a(k) = k
n=2: a(k) = (1/2)*k^2 - (1/2)*k
n=3: a(k) = (1/6)*k^3 - (1/2)*k^2 + (1/3)*k
n=4: a(k) = (1/8)*k^4 - (1/4)*k^3 + (3/8)*k^2 - (1/4)*k
n=5: a(k) = (1/10)*k^5 - (1/2)*k^4 + k^3 - k^2 + (2/5)*k
n=6: a(k) = (1/12)*k^6 - (1/2)*k^5 + (3/2)*k^4 - (7/3)*k^3 + (23/12)*k^2 - (2/3)*k
n=7: a(k) = (1/14)*k^7 - (1/2)*k^6 + (3/2)*k^5 - (5/2)*k^4 + (5/2)*k^3 - (3/2)*k^2 + (3/7)*k
A006565 Number of ways to color vertices of a hexagon using <= n colors, allowing only rotations.
0, 1, 14, 130, 700, 2635, 7826, 19684, 43800, 88725, 166870, 295526, 498004, 804895, 1255450, 1899080, 2796976, 4023849, 5669790, 7842250, 10668140, 14296051, 18898594, 24674860, 31853000, 40692925, 51489126, 64573614
Offset: 0
Keywords
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Victor Meally, Letter to N. J. A. Sloane, no date.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
Programs
-
Maple
A006565 := n-> (n^6+n^3+2*n^2+2*n)/6. A006565:=-(1+7*z+53*z**2+49*z**3+10*z**4)/(z-1)**7; [Conjectured by Simon Plouffe in his 1992 dissertation.]
Formula
n*(n+1)*(n^2+n+1)*(n^2-2*n+2)/6.
A051137 Table T(n,k) read by antidiagonals: number of necklaces allowing turnovers (bracelets) with n beads of k colors.
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 6, 10, 10, 5, 1, 1, 8, 21, 20, 15, 6, 1, 1, 13, 39, 55, 35, 21, 7, 1, 1, 18, 92, 136, 120, 56, 28, 8, 1, 1, 30, 198, 430, 377, 231, 84, 36, 9, 1, 1, 46, 498, 1300, 1505, 888, 406, 120, 45, 10, 1
Offset: 0
Examples
Table begins with T[0,1]: 1 1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 1 3 6 10 15 21 28 36 45 55 1 4 10 20 35 56 84 120 165 220 1 6 21 55 120 231 406 666 1035 1540 1 8 39 136 377 888 1855 3536 6273 10504 1 13 92 430 1505 4291 10528 23052 46185 86185 1 18 198 1300 5895 20646 60028 151848 344925 719290 1 30 498 4435 25395 107331 365260 1058058 2707245 6278140 1 46 1219 15084 110085 563786 2250311 7472984 21552969 55605670 1 78 3210 53764 493131 3037314 14158228 53762472 174489813 500280022
Links
- C. G. Bower, Transforms (2)
Crossrefs
Programs
-
Mathematica
b[n_, k_] := DivisorSum[n, EulerPhi[#]*k^(n/#) &] / n; c[n_, k_] := If[EvenQ[n], (k^(n/2) + k^(n/2+1))/2, k^((n+1)/2)]; T[0, ] = 1; T[n, k_] := (b[n, k] + c[n, k])/2; Table[T[n, k-n], {k, 1, 11}, {n, k-1, 0, -1}] // Flatten (* Robert A. Russell, Sep 21 2018 after Jean-François Alcover *)
Formula
T(n, k) = (k^floor((n+1)/2) + k^ceiling((n+1)/2)) / 4 + (1/(2*n)) * Sum_{d divides n} phi(d) * k^(n/d). - Robert A. Russell, Sep 21 2018
G.f. for column k: (kx/4)*(kx+x+2)/(1-kx^2) - Sum_{d>0} phi(d)*log(1-kx^d)/2d. - Robert A. Russell, Sep 28 2018
T(n, k) = (k^floor((n+1)/2) + k^ceiling((n+1)/2))/4 + (1/(2*n))*Sum_{i=1..n} k^gcd(n,i). (See A075195 formulas.) - Richard L. Ollerton, May 04 2021
A321791 Table read by descending antidiagonals: T(n,k) is the number of unoriented cycles (bracelets) of length n using up to k available colors.
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 3, 1, 0, 1, 4, 6, 4, 1, 0, 1, 5, 10, 10, 6, 1, 0, 1, 6, 15, 20, 21, 8, 1, 0, 1, 7, 21, 35, 55, 39, 13, 1, 0, 1, 8, 28, 56, 120, 136, 92, 18, 1, 0, 1, 9, 36, 84, 231, 377, 430, 198, 30, 1, 0
Offset: 0
Examples
Table begins with T(0,0): 1 1 1 1 1 1 1 1 1 1 1 ... 0 1 2 3 4 5 6 7 8 9 10 ... 0 1 3 6 10 15 21 28 36 45 55 ... 0 1 4 10 20 35 56 84 120 165 220 ... 0 1 6 21 55 120 231 406 666 1035 1540 ... 0 1 8 39 136 377 888 1855 3536 6273 10504 ... 0 1 13 92 430 1505 4291 10528 23052 46185 86185 ... 0 1 18 198 1300 5895 20646 60028 151848 344925 719290 ... 0 1 30 498 4435 25395 107331 365260 1058058 2707245 6278140 ... 0 1 46 1219 15084 110085 563786 2250311 7472984 21552969 55605670 ... 0 1 78 3210 53764 493131 3037314 14158228 53762472 174489813 500280022 ... For T(3,3)=10, the unoriented cycles are 9 achiral (AAA, AAB, AAC, ABB, ACC, BBB, BBC, BCC, CCC) and 1 chiral pair (ABC-ACB).
Crossrefs
Programs
-
Mathematica
Table[If[k>0, DivisorSum[k, EulerPhi[#](n-k)^(k/#)&]/(2k) + ((n-k)^Floor[(k+1)/2]+(n-k)^Ceiling[(k+1)/2])/4, 1], {n, 0, 12}, {k, 0, n}] // Flatten
Formula
T(n,k) = [n==0] + [n>0] * (k^floor((n+1)/2) + k^ceiling((n+1)/2)) / 4 + (1/(2*n)) * Sum_{d|n} phi(d) * k^(n/d).
Linear recurrence for row n: T(n,k) = Sum_{j=0..n} -binomial(j-n-1,j+1) * T(n,k-1-j) for k >= n + 1.
O.g.f. for column k >= 0: Sum_{n>=0} T(n,k)*x^n = 3/4 + (1 + k*x)^2/(4*(1 - k*x^2)) - (1/2) * Sum_{d >= 1} (phi(d)/d) * log(1 - k*x^d). - Petros Hadjicostas, Feb 07 2021
Comments