A027671 Number of necklaces with n beads of 3 colors, allowing turning over.
1, 3, 6, 10, 21, 39, 92, 198, 498, 1219, 3210, 8418, 22913, 62415, 173088, 481598, 1351983, 3808083, 10781954, 30615354, 87230157, 249144711, 713387076, 2046856566, 5884491500, 16946569371, 48883660146, 141217160458, 408519019449, 1183289542815
Offset: 0
Examples
For n=2, the six bracelets are AA, AB, AC, BB, BC, and CC. - _Robert A. Russell_, Sep 24 2018
References
- J. L. Fisher, Application-Oriented Algebra (1977), ISBN 0-7002-2504-8, circa p. 215.
- M. Gardner, "New Mathematical Diversions from Scientific American" (Simon and Schuster, New York, 1966), pp. 245-246.
Links
- T. D. Noe, Table of n, a(n) for n = 0..200
- E. N. Gilbert and J. Riordan, Symmetry types of periodic sequences, Illinois J. Math., 5 (1961), 657-665.
- F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc.
- F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc. [Cached copy, with permission, pdf format only]
- M. Taniguchi, H. Du, and J. S. Lindsey, Enumeration of virtual libraries of combinatorial modular macrocyclic (bracelet, necklace) architectures and their linear counterparts, Journal of Chemical Information and Modeling, 53 (2013), 2203-2216.
- R. M. Thompson and R. T. Downs, Systematic generation of all nonequivalent closest-packed stacking sequences of length N using group theory, Acta Cryst. B57 (2001), 766-771; B58 (2002), 153.
- Eric Weisstein's World of Mathematics, Necklace.
- Index entries for sequences related to bracelets
Crossrefs
Programs
-
Mathematica
Needs["Combinatorica`"]; Join[{1}, Table[CycleIndex[DihedralGroup[n], s]/.Table[s[i]->3, {i,1,n}], {n,1,30}]] (* Geoffrey Critzer, Sep 29 2012 *) Needs["Combinatorica`"]; Join[{1}, Table[NumberOfNecklaces[n, 3, Dihedral], {n, 30}]] (* T. D. Noe, Oct 02 2012 *) mx=40;CoefficientList[Series[(1-Sum[ EulerPhi[n]*Log[1-3*x^n]/n,{n,mx}]+(1+3 x+3 x^2)/(1-3 x^2))/2,{x,0,mx}],x] (* Herbert Kociemba, Nov 02 2016 *) t[n_, k_] := (For[t1 = 0; d = 1, d <= n, d++, If[Mod[n, d] == 0, t1 = t1 + EulerPhi[d]*k^(n/d)]]; If[EvenQ[n], (t1 + (n/2)*(1+k)*k^(n/2))/(2*n), (t1 + n*k^((n+1)/2))/(2*n)]); a[0] = 1; a[n_] := t[n, 3]; Array[a, 30, 0] (* Jean-François Alcover, Nov 02 2017, after Maple code for A081720 *) k=3; Prepend[Table[DivisorSum[n, EulerPhi[#] k^(n/#) &]/(2n) + (k^Floor[(n+1)/2] + k^Ceiling[(n+1)/2])/4, {n, 1, 30}], 1] (* Robert A. Russell, Sep 24 2018 *)
-
PARI
a(n,k=3) = if(n==0,1,(k^floor((n+1)/2) + k^ceil((n+1)/2))/4 + (1/(2*n))* sumdiv(n, d, eulerphi(d)*k^(n/d) ) ); vector(55,n,a(n-1)) \\ Joerg Arndt, Oct 20 2019
Formula
G.f.: (1 - Sum_{n>=1} phi(n)*log(1 - 3*x^n)/n + (1+3*x+3*x^2)/(1-3*x^2))/2. - Herbert Kociemba, Nov 02 2016
For n > 0, a(n) = (k^floor((n+1)/2) + k^ceiling((n+1)/2))/4 + (1/(2*n))* Sum_{d|n} phi(d)*k^(n/d), where k=3 is the maximum number of colors. - Robert A. Russell, Sep 24 2018
a(0) = 1; a(n) = (k^floor((n+1)/2) + k^ceiling((n+1)/2))/4 + (1/(2*n))*Sum_{i=1..n} k^gcd(n,i), where k=3 is the maximum number of colors.
(See A075195 formulas.) - Richard L. Ollerton, May 04 2021
Extensions
More terms from Christian G. Bower
Comments