A027687 4-perfect (quadruply-perfect or sous-triple) numbers: sum of divisors of n is 4n.
30240, 32760, 2178540, 23569920, 45532800, 142990848, 1379454720, 43861478400, 66433720320, 153003540480, 403031236608, 704575228896, 181742883469056, 6088728021160320, 14942123276641920, 20158185857531904, 275502900594021408
Offset: 1
Keywords
Examples
From _Daniel Forgues_, May 09 2010: (Start) 30240 = 2^5*3^3*5*7 sigma(30240) = (2^6-1)/1*(3^4-1)/2*(5^2-1)/4*(7^2-1)/6 = (63)*(40)*(6)*(8) = (7*3^2)*(2^3*5)*(2*3)*(2^3) = 2^7*3^3*5*7 = (2^2) * (2^5*3^3*5*7) = 4 * 30240 (End)
References
- R. K. Guy, Unsolved Problems in Number Theory, B2.
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 143.
Links
- T. D. Noe, Table of n, a(n) for n=1..36 (complete sequence from Flammenkamp)
- Abiodun E. Adeyemi, A Study of @-numbers, arXiv:1906.05798 [math.NT], 2019.
- Kevin A. Broughan and Qizhi Zhou, Divisibility by 3 of even multiperfect numbers of abundancy 3 and 4, JIS 13 (2010) 10.1.5
- Seth Colbert-Pollack, Judy Holdener, Emily Rachfal, and Yanqi Xu, A DIY Project: Construct Your Own Multiply Perfect Number!, Math Horizons, Vol. 28, pp. 20-23, February 2021.
- Farideh Firoozbakht and Maxmilian F. Hasler, Variations on Euclid's formula for Perfect Numbers, JIS 13 (2010) #10.3.1.
- Achim Flammenkamp, The Multiply Perfect Numbers Page
- Shyam Sunder Gupta, Perfect, Multiply Perfect, and Sociable Numbers, Exploring the Beauty of Fascinating Numbers, Springer (2025) Ch. 6, 185-207.
- Fred Helenius, Link to Glossary and Lists
- Walter Nissen, Abundancy : Some Resources
- Eric Weisstein's World of Mathematics, Multiperfect Number.
- Eric Weisstein's World of Mathematics, Sous-Triple.
- Wikipedia, Multiply perfect number
Programs
-
Mathematica
AbundantQ[n_]:=DivisorSigma[1, n]==4*n;a={};Do[If[AbundantQ[n], AppendTo[a, n]], {n, 10^6}];a (* Vladimir Joseph Stephan Orlovsky, Aug 16 2008 *)
Extensions
4 more terms from Labos Elemer
Comments