cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027764 a(n) = (n+1)*binomial(n+1,4).

Original entry on oeis.org

4, 25, 90, 245, 560, 1134, 2100, 3630, 5940, 9295, 14014, 20475, 29120, 40460, 55080, 73644, 96900, 125685, 160930, 203665, 255024, 316250, 388700, 473850, 573300, 688779, 822150, 975415, 1150720, 1350360, 1576784, 1832600, 2120580, 2443665, 2804970, 3207789
Offset: 3

Views

Author

Thi Ngoc Dinh (via R. K. Guy)

Keywords

Comments

Number of 6-subsequences of [ 1, n ] with just 1 contiguous pair.
a(n) is also the number of permutations of n+1 symbols that 4-commute with an (n+1)-cycle (see A233440 for definition). - Luis Manuel Rivera Martínez, Feb 07 2014

Crossrefs

Cf. A233440.

Programs

  • Magma
    [(n+1)*Binomial(n+1,4): n in [3..35]]; // Vincenzo Librandi, Feb 08 2014
  • Mathematica
    Table[(n + 1)Binomial[n + 1, 4], {n, 3, 40}] (* or *) LinearRecurrence[ {6, -15, 20, -15, 6, -1}, {4, 25, 90, 245, 560, 1134}, 40] (* Harvey P. Dale, Jun 14 2013 *)
    CoefficientList[Series[(4 + x)/(1 - x)^6, {x, 0, 30}], x] (* Vincenzo Librandi, Feb 08 2014 *)

Formula

G.f.: (4+x)*x^3/(1-x)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6). - Harvey P. Dale, Jun 14 2013
a(n) = 10*C(n+2,2)*C(n+2,5)/(n+2)^2. - Gary Detlefs, Aug 20 2013
Sum_{n>=3} 1/a(n) = 62/9 - (2/3)*Pi^2. - Jaume Oliver Lafont, Jul 15 2017
Sum_{n>=3} (-1)^(n+1)/a(n) = Pi^2/3 + 80*log(2)/3 - 194/9. - Amiram Eldar, Jan 28 2022