cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027800 a(n) = (n+1)*binomial(n+4, 4).

Original entry on oeis.org

1, 10, 45, 140, 350, 756, 1470, 2640, 4455, 7150, 11011, 16380, 23660, 33320, 45900, 62016, 82365, 107730, 138985, 177100, 223146, 278300, 343850, 421200, 511875, 617526, 739935, 881020, 1042840, 1227600, 1437656, 1675520, 1943865, 2245530, 2583525
Offset: 0

Views

Author

Thi Ngoc Dinh (via R. K. Guy)

Keywords

Comments

Number of 9-subsequences of [1, n] with just 4 contiguous pairs.
Kekulé numbers for certain benzenoids. - Emeric Deutsch, Jun 19 2005
Equals binomial transform of [1, 9, 26, 34, 21, 5, 0, 0, 0, ...]. - Gary W. Adamson, Jul 27 2008
a(n) equals the coefficient of x^4 of the characteristic polynomial of the (n+4) X (n+4) matrix with 2's along the main diagonal and 1's everywhere else (see Mathematica code below). - John M. Campbell, Jul 08 2011
Convolution of triangular numbers (A000217) and heptagonal numbers (A000566). - Bruno Berselli, Jun 27 2013

Examples

			By the fifth comment: A000217(1..6) and A000566(1..6) give the term a(6) = 1*21 + 7*15 + 18*10 + 34*6 + 55*3 + 81*1 = 756. - _Bruno Berselli_, Jun 27 2013
		

References

  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
  • Herbert John Ryser, Combinatorial Mathematics, "The Carus Mathematical Monographs", No. 14, John Wiley and Sons, 1963, pp. 1-8.
  • S. J. Cyvin and I. Gutman, KekulĂ© structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p.233, # 9).

Crossrefs

Partial sums of A002418.
Cf. A000332, A093562 ((5, 1) Pascal, column m=5).

Programs

  • GAP
    List([0..40], n-> (n+1)*Binomial(n+4,4)); # G. C. Greubel, Aug 28 2019
  • Magma
    [(n+1)*Binomial(n+4,4): n in [0..40]]; // G. C. Greubel, Aug 28 2019
    
  • Maple
    a:=n->(n+1)^2*(n+2)*(n+3)*(n+4)/24: seq(a(n),n=0..40); # Emeric Deutsch
  • Mathematica
    Table[Coefficient[CharacteristicPolynomial[Array[KroneckerDelta[#1, #2] + 1 &, {n+4, n+4}], x], x^4], {n, 0, 40}] (* John M. Campbell, Jul 08 2011 *)
    Table[(n+1)Binomial[n+4, 4], {n,0,40}] (* or *) CoefficientList[Series[ (1+4x)/(1-x)^6, {x,0,40}], x] (* Michael De Vlieger, Jul 14 2017 *)
    LinearRecurrence[{6,-15,20,-15,6,-1},{1,10,45,140,350,756},40] (* Harvey P. Dale, Aug 04 2020 *)
  • PARI
    vector(40, n, n*binomial(n+3,4)) \\ G. C. Greubel, Aug 28 2019
    
  • Sage
    [(n+1)*binomial(n+4,4) for n in (0..40)] # G. C. Greubel, Aug 28 2019
    

Formula

G.f.: (1+4*x)/(1-x)^6.
a(n) = (n+1)*A000332(n+4).
Sum_{n>=0} 1/a(n) = (2/3)*Pi^2 - 49/9. - Jaume Oliver Lafont, Jul 14 2017
E.g.f.: exp(x)*(24 + 216*x + 312*x^2 + 136*x^3 + 21*x^4 + x^5)/24. - Stefano Spezia, May 08 2021
Sum_{n>=0} (-1)^n/a(n) = Pi^2/3 - 80*log(2)/3 + 145/9. - Amiram Eldar, Jan 28 2022