A027800 a(n) = (n+1)*binomial(n+4, 4).
1, 10, 45, 140, 350, 756, 1470, 2640, 4455, 7150, 11011, 16380, 23660, 33320, 45900, 62016, 82365, 107730, 138985, 177100, 223146, 278300, 343850, 421200, 511875, 617526, 739935, 881020, 1042840, 1227600, 1437656, 1675520, 1943865, 2245530, 2583525
Offset: 0
Examples
By the fifth comment: A000217(1..6) and A000566(1..6) give the term a(6) = 1*21 + 7*15 + 18*10 + 34*6 + 55*3 + 81*1 = 756. - _Bruno Berselli_, Jun 27 2013
References
- Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
- Herbert John Ryser, Combinatorial Mathematics, "The Carus Mathematical Monographs", No. 14, John Wiley and Sons, 1963, pp. 1-8.
- S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p.233, # 9).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Mina Aganagic, Albrecht Klemm and Cumrun Vafa, Disk Instantons, Mirror Symmetry and the Duality Web, arXiv:hep-th/0105045, 2001.
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
- Index to sequences related to pyramidal numbers.
Programs
-
GAP
List([0..40], n-> (n+1)*Binomial(n+4,4)); # G. C. Greubel, Aug 28 2019
-
Magma
[(n+1)*Binomial(n+4,4): n in [0..40]]; // G. C. Greubel, Aug 28 2019
-
Maple
a:=n->(n+1)^2*(n+2)*(n+3)*(n+4)/24: seq(a(n),n=0..40); # Emeric Deutsch
-
Mathematica
Table[Coefficient[CharacteristicPolynomial[Array[KroneckerDelta[#1, #2] + 1 &, {n+4, n+4}], x], x^4], {n, 0, 40}] (* John M. Campbell, Jul 08 2011 *) Table[(n+1)Binomial[n+4, 4], {n,0,40}] (* or *) CoefficientList[Series[ (1+4x)/(1-x)^6, {x,0,40}], x] (* Michael De Vlieger, Jul 14 2017 *) LinearRecurrence[{6,-15,20,-15,6,-1},{1,10,45,140,350,756},40] (* Harvey P. Dale, Aug 04 2020 *)
-
PARI
vector(40, n, n*binomial(n+3,4)) \\ G. C. Greubel, Aug 28 2019
-
Sage
[(n+1)*binomial(n+4,4) for n in (0..40)] # G. C. Greubel, Aug 28 2019
Formula
G.f.: (1+4*x)/(1-x)^6.
a(n) = (n+1)*A000332(n+4).
Sum_{n>=0} 1/a(n) = (2/3)*Pi^2 - 49/9. - Jaume Oliver Lafont, Jul 14 2017
E.g.f.: exp(x)*(24 + 216*x + 312*x^2 + 136*x^3 + 21*x^4 + x^5)/24. - Stefano Spezia, May 08 2021
Sum_{n>=0} (-1)^n/a(n) = Pi^2/3 - 80*log(2)/3 + 145/9. - Amiram Eldar, Jan 28 2022
Comments