cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027810 a(n) = (n+1)*binomial(n+5, 5).

Original entry on oeis.org

1, 12, 63, 224, 630, 1512, 3234, 6336, 11583, 20020, 33033, 52416, 80444, 119952, 174420, 248064, 345933, 474012, 639331, 850080, 1115730, 1447160, 1856790, 2358720, 2968875, 3705156, 4587597, 5638528, 6882744, 8347680, 10063592, 12063744, 14384601, 17066028
Offset: 0

Views

Author

Thi Ngoc Dinh (via R. K. Guy)

Keywords

Comments

Number of 11-subsequences of [ 1, n ] with just 5 contiguous pairs.

References

  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
  • Herbert John Ryser, Combinatorial Mathematics, Carus Mathematical Monographs No. 14, John Wiley and Sons, 1963, pp. 1-8.

Crossrefs

Partial sums of A051843.
Cf. A093563 ((6, 1) Pascal, column m=6).

Programs

  • Haskell
    a027810 n = (n + 1) * a007318' (n + 5) 5
    -- Reinhard Zumkeller, Aug 31 2014
    
  • Magma
    [(n+1)*Binomial(n+5,5): n in [0..40]]; // Vincenzo Librandi, Jul 30 2014
    
  • Magma
    [n*(n-1)*(n-2)*(n-3)*(n-4)^2/120: n in [5..40]]; // Vincenzo Librandi, Jul 30 2014
    
  • Maple
    [seq(n*(n-1)*(n-2)*(n-3)*(n-4)^2/5!,n=5..33)]; # Zerinvary Lajos, Oct 19 2006
  • Mathematica
    Table[(n+1)Binomial[n+5,5],{n,0,30}] (* Harvey P. Dale, Jul 29 2014 *)
    CoefficientList[Series[(1 + 5 x)/(1 - x)^7, {x, 0, 40}], x] (* Vincenzo Librandi, Jul 30 2014 *)
  • PARI
    a(n)=n*(n^5+16*n^4+100*n^3+310*n^2+499*n+394)/120+1 \\ Charles R Greathouse IV, Sep 28 2015

Formula

G.f.: (1+5*x)/(1-x)^7.
a(n) = A245334(n+5, 5)/A000142(5). - Reinhard Zumkeller, Aug 31 2014
From Amiram Eldar, Jan 28 2022: (Start)
Sum_{n>=0} 1/a(n) = 5*Pi^2/6 - 1025/144.
Sum_{n>=0} (-1)^n/a(n) = 5*Pi^2/12 - 160*log(2)/3 + 4865/144. (End)

Extensions

Two redundant formulas deleted by N. J. A. Sloane, Jul 30 2014