cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A051922 Duplicate of A027810.

Original entry on oeis.org

1, 12, 63, 224, 630, 1512, 3234, 6336, 11583, 20020, 33033, 52416, 80444
Offset: 0

Views

Author

Keywords

A245334 A factorial-like triangle read by rows: T(0,0) = 1; T(n+1,0) = T(n,0)+1; T(n+1,k+1) = T(n,0)*T(n,k), k=0..n.

Original entry on oeis.org

1, 2, 1, 3, 4, 2, 4, 9, 12, 6, 5, 16, 36, 48, 24, 6, 25, 80, 180, 240, 120, 7, 36, 150, 480, 1080, 1440, 720, 8, 49, 252, 1050, 3360, 7560, 10080, 5040, 9, 64, 392, 2016, 8400, 26880, 60480, 80640, 40320, 10, 81, 576, 3528, 18144, 75600, 241920, 544320
Offset: 0

Views

Author

Reinhard Zumkeller, Aug 30 2014

Keywords

Comments

row(0) = {1}; row(n+1) = row(n) multiplied by n and prepended with (n+1);
A111063(n+1) = sum of n-th row;
T(2*n,n) = A002690(n), central terms;
T(n,0) = n + 1;
T(n,1) = A000290(n), n > 0;
T(n,2) = A011379(n-1), n > 1;
T(n,3) = A047927(n), n > 2;
T(n,4) = A192849(n-1), n > 3;
T(n,5) = A000142(5) * A027810(n-5), n > 4;
T(n,6) = A000142(6) * A027818(n-6), n > 5;
T(n,7) = A000142(7) * A056001(n-7), n > 6;
T(n,8) = A000142(8) * A056003(n-8), n > 7;
T(n,9) = A000142(9) * A056114(n-9), n > 8;
T(n,n-10) = 11 * A051431(n-10), n > 9;
T(n,n-9) = 10 * A049398(n-9), n > 8;
T(n,n-8) = 9 * A049389(n-8), n > 7;
T(n,n-7) = 8 * A049388(n-7), n > 6;
T(n,n-6) = 7 * A001730(n), n > 5;
T(n,n-5) = 6 * A001725(n), n > 5;
T(n,n-4) = 5 * A001720(n), n > 4;
T(n,n-3) = 4 * A001715(n), n > 2;
T(n,n-2) = A070960(n), n > 1;
T(n,n-1) = A052849(n), n > 0;
T(n,n) = A000142(n);
T(n,k) = A137948(n,k) * A007318(n,k), 0 <= k <= n.

Examples

			.  0:   1;
.  1:   2,  1;
.  2:   3,  4,   2;
.  3:   4,  9,  12,    6;
.  4:   5, 16,  36,   48,    24;
.  5:   6, 25,  80,  180,   240,   120;
.  6:   7, 36, 150,  480,  1080,  1440,    720;
.  7:   8, 49, 252, 1050,  3360,  7560,  10080,   5040;
.  8:   9, 64, 392, 2016,  8400, 26880,  60480,  80640,  40320;
.  9:  10, 81, 576, 3528, 18144, 75600, 241920, 544320, 725760, 362880.
		

Crossrefs

Programs

  • Haskell
    a245334 n k = a245334_tabl !! n !! k
    a245334_row n = a245334_tabl !! n
    a245334_tabl = iterate (\row@(h:_) -> (h + 1) : map (* h) row) [1]
  • Mathematica
    Table[(n!)/((n - k)!)*(n + 1 - k), {n, 0, 9}, {k, 0, n}] // Flatten (* Michael De Vlieger, Sep 10 2017 *)

Formula

T(n,k) = n!*(n+1-k)/(n-k)!. - Werner Schulte, Sep 09 2017

A062264 Coefficient triangle of certain polynomials N(4; m,x).

Original entry on oeis.org

1, 1, 5, 1, 12, 15, 1, 21, 63, 35, 1, 32, 168, 224, 70, 1, 45, 360, 840, 630, 126, 1, 60, 675, 2400, 3150, 1512, 210, 1, 77, 1155, 5775, 11550, 9702, 3234, 330, 1, 96, 1848, 12320, 34650, 44352, 25872, 6336, 495, 1, 117, 2808, 24024, 90090, 162162, 144144, 61776, 11583, 715
Offset: 0

Views

Author

Wolfdieter Lang, Jun 19 2001

Keywords

Comments

The e.g.f. of the m-th (unsigned) column sequence without leading zeros of the generalized (a=4) Laguerre triangle L(4; n+m,m) = A062140(n+m,m), n >= 0, is N(4; m,x)/(1-x)^(5+2*m), with the row polynomials N(4; m,x) := Sum_{k=0..m} T(m,k)*x^k.

Examples

			Triangle begins as:
  1;
  1,   5;
  1,  12,   15;
  1,  21,   63,    35;
  1,  32,  168,   224,     70;
  1,  45,  360,   840,    630,    126;
  1,  60,  675,  2400,   3150,   1512,    210;
  1,  77, 1155,  5775,  11550,   9702,   3234,    330;
  1,  96, 1848, 12320,  34650,  44352,  25872,   6336,    495;
  1, 117, 2808, 24024,  90090, 162162, 144144,  61776,  11583,   715;
  1, 140, 4095, 43680, 210210, 504504, 630630, 411840, 135135, 20020, 1001;
		

Crossrefs

Family of polynomials (see A062145): A008459 (c=1), A132813 (c=2), A062196 (c=3), A062145 (c=4), this sequence (c=5), A062190 (c=6).
Columns: A028347 (k=2), A104473 (k=3), A104474 (k=4), A104475 (k=5), A027814 (k=6), A103604 (k=7), A104476 (k=8), A104478 (k=9).
Diagonals: A000332 (k=n), A027810 (k=n-1), A105249 (k=n-2), A105250 (k=n-3), A105251 (k=n-4), A105252 (k=n-5), A105253 (k=n-6), A105254 (k=n-7).
Sums: A002694 (row).

Programs

  • Magma
    A062264:= func< n,k | Binomial(n,k)*Binomial(n+4,k) >;
    [A062264(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 03 2025
    
  • Mathematica
    A062264[n_, k_]:= Binomial[n,k]*Binomial[n+4,k];
    Table[A062264[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 03 2025 *)
  • SageMath
    def A062264(n,k): return binomial(n,k)*binomial(n+4,k)
    print(flatten([[A062264(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Mar 03 2025

Formula

T(m, k) = [x^k] N(4; m, x), with N(4; m, x) = ((1-x)^(2*m+5))*(d^m/dx^m)((x^m)/(m!*(1-x)^(m+5))).
N(4; m, x) = Sum_{j=0..m} (binomial(m, j)*(2*m+4-j)!/((m+4)!*(m-j)!)*(x^(m-j))*(1-x)^j).
From G. C. Greubel, Mar 03 2025: (Start)
T(n, k) = binomial(n,k)*binomial(n+4,k).
Sum_{k=0..n} (-1)^k*T(n, k) = (1/4)*( (1+(-1)^n)*(-1)^((n+2)/2)*(n^2 + 5*n - 2)*Catalan((n+2)/2)/(n+1) + 8*(1-(-1)^n)*(-1)^((n+1)/2)*Catalan((n+1)/2) ). (End)

A093563 (6,1)-Pascal triangle.

Original entry on oeis.org

1, 6, 1, 6, 7, 1, 6, 13, 8, 1, 6, 19, 21, 9, 1, 6, 25, 40, 30, 10, 1, 6, 31, 65, 70, 40, 11, 1, 6, 37, 96, 135, 110, 51, 12, 1, 6, 43, 133, 231, 245, 161, 63, 13, 1, 6, 49, 176, 364, 476, 406, 224, 76, 14, 1, 6, 55, 225, 540, 840, 882, 630, 300, 90, 15, 1, 6, 61, 280, 765, 1380
Offset: 0

Views

Author

Wolfdieter Lang, Apr 22 2004

Keywords

Comments

The array F(6;n,m) gives in the columns m >= 1 the figurate numbers based on A016921, including the octagonal numbers A000567, (see the W. Lang link).
This is the sixth member, d=6, in the family of triangles of figurate numbers, called (d,1) Pascal triangles: A007318 (Pascal), A029653, A093560-2, for d=1..5.
This is an example of a Riordan triangle (see A093560 for a comment and A053121 for a comment and the 1991 Shapiro et al. reference on the Riordan group). Therefore the o.g.f. for the row polynomials p(n,x):=Sum_{m=0..n} a(n,m)*x^m is G(z,x)=(1+5*z)/(1-(1+x)*z).
The SW-NE diagonals give A022096(n-1) = Sum_{k=0..ceiling((n-1)/2)} a(n-1-k,k), n >= 1, with n=0 value 5. Observation by Paul Barry, Apr 29 2004. Proof via recursion relations and comparison of inputs.
For a closed-form formula for generalized Pascal's triangle see A228576. - Boris Putievskiy, Sep 09 2013

Examples

			Triangle begins
  1;
  6,  1;
  6,  7,  1;
  6, 13,  8,  1;
  6, 19, 21,  9,  1;
  6, 25, 40, 30, 10,  1;
  ...
		

References

  • Kurt Hawlitschek, Johann Faulhaber 1580-1635, Veroeffentlichung der Stadtbibliothek Ulm, Band 18, Ulm, Germany, 1995, Ch. 2.1.4. Figurierte Zahlen.
  • Ivo Schneider: Johannes Faulhaber 1580-1635, Birkhäuser, Basel, Boston, Berlin, 1993, ch.5, pp. 109-122.

Crossrefs

Row sums: A005009(n-1), n>=1, 1 for n=0, alternating row sums are 1 for n=0, 5 for n=2 and 0 else.
The column sequences give for m=1..9: A016921, A000567 (octagonal), A002414, A002419, A051843, A027810, A034265, A054487, A055848.

Programs

  • Haskell
    a093563 n k = a093563_tabl !! n !! k
    a093563_row n = a093563_tabl !! n
    a093563_tabl = [1] : iterate
                   (\row -> zipWith (+) ([0] ++ row) (row ++ [0])) [6, 1]
    -- Reinhard Zumkeller, Aug 31 2014
    
  • Mathematica
    lim = 11; s = Series[(1 + 5*x)/(1 - x)^(m + 1), {x, 0, lim}]; t = Table[ CoefficientList[s, x], {m, 0, lim}]; Flatten[ Table[t[[j - k + 1, k]], {j, lim + 1}, {k, j, 1, -1}]] (* Jean-François Alcover, Sep 16 2011, after g.f. *)
  • Python
    from math import comb, isqrt
    def A093563(n): return comb(r:=(m:=isqrt(k:=n+1<<1))-(k<=m*(m+1)),a:=n-comb(r+1,2))*(r+5*(r-a))//r if n else 1 # Chai Wah Wu, Nov 12 2024

Formula

a(n, m)=F(6;n-m, m) for 0<= m <= n, otherwise 0, with F(6;0, 0)=1, F(6;n, 0)=6 if n>=1 and F(6;n, m):= (6*n+m)*binomial(n+m-1, m-1)/m if m>=1.
Recursion: a(n, m)=0 if m>n, a(0, 0)= 1; a(n, 0)=6 if n>=1; a(n, m)= a(n-1, m) + a(n-1, m-1).
G.f. column m (without leading zeros): (1+5*x)/(1-x)^(m+1), m>=0.
T(n, k) = C(n, k) + 5*C(n-1, k). - Philippe Deléham, Aug 28 2005
exp(x) * e.g.f. for row n = e.g.f. for diagonal n. For example, for n = 3 we have exp(x)*(6 + 13*x + 8*x^2/2! + x^3/3!) = 6 + 19*x + 40*x^2/2! + 70*x^3/3! + 110*x^4/4! + .... The same property holds more generally for Riordan arrays of the form ( f(x), x/(1 - x) ). - Peter Bala, Dec 22 2014

A034265 a(n) = binomial(n+6,6)*(6*n+7)/7.

Original entry on oeis.org

1, 13, 76, 300, 930, 2442, 5676, 12012, 23595, 43615, 76648, 129064, 209508, 329460, 503880, 751944, 1097877, 1571889, 2211220, 3061300, 4177030, 5624190, 7480980, 9839700, 12808575, 16513731, 21101328, 26739856, 33622600, 41970280
Offset: 0

Views

Author

Keywords

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.

Crossrefs

a(n)=f(n, 5) where f is given in A034261.
Partial sums of A027810.
Cf. A093563 ((6, 1) Pascal, column m=7).
Cf. similar sequences listed in A254142.

Programs

  • GAP
    List([0..30], n-> (6*n+7)*Binomial(n+6,6)/7); # G. C. Greubel, Aug 28 2019
  • Magma
    [(6*n+7)*Binomial(n+6,6)/7: n in [0..40]]; // Vincenzo Librandi, Jul 30 2014
    
  • Maple
    seq((6*n+7)*binomial(n+6,6)/7, n=0..30); # G. C. Greubel, Aug 28 2019
  • Mathematica
    Accumulate[Table[(n+1)Binomial[n+5,5],{n,0,30}]] (* or *) LinearRecurrence[{8,-28,56,-70,56,-28,8,-1}, {1,13,76,300,930,2442,5676, 12012}, 30] (* Harvey P. Dale, Jul 29 2014 *)
    CoefficientList[Series[(1+5x)/(1-x)^8, {x,0,40}], x] (* Vincenzo Librandi, Jul 30 2014 *)
  • PARI
    a(n)=(6*n/7+1)*binomial(n+6,6) \\ Charles R Greathouse IV, Oct 07 2015
    
  • Sage
    [(6*n+7)*binomial(n+6,6)/7 for n in (0..30)] # G. C. Greubel, Aug 28 2019
    

Formula

G.f.: (1+5*x)/(1-x)^8.
a(0)=1, a(1)=13, a(2)=76, a(3)=300, a(4)=930, a(5)=2442, a(6)=5676, a(7)=12012, a(n) = 8*a(n-1) -28*a(n-2) +56*a(n-3) -70*a(n-4) +56*a(n-5) -28*a(n-6) +8*a(n-7) -a(n-8). - Harvey P. Dale, Jul 29 2014

Extensions

Corrected and extended by N. J. A. Sloane, Apr 21 2000

A093375 Array T(m,n) read by ascending antidiagonals: T(m,n) = m*binomial(n+m-2, n-1) for m, n >= 1.

Original entry on oeis.org

1, 2, 1, 3, 4, 1, 4, 9, 6, 1, 5, 16, 18, 8, 1, 6, 25, 40, 30, 10, 1, 7, 36, 75, 80, 45, 12, 1, 8, 49, 126, 175, 140, 63, 14, 1, 9, 64, 196, 336, 350, 224, 84, 16, 1, 10, 81, 288, 588, 756, 630, 336, 108, 18, 1, 11, 100, 405, 960, 1470, 1512, 1050, 480, 135, 20, 1, 12
Offset: 1

Views

Author

Ralf Stephan, Apr 28 2004

Keywords

Comments

Number of n-long m-ary words avoiding the pattern 1-1'2'.
T(n,n+1) = Sum_{i=1..n} T(n,i).
Exponential Riordan array [(1+x)e^x, x] as a number triangle. - Paul Barry, Feb 17 2009
From Peter Bala, Jul 22 2014: (Start)
Call this array M and for k = 0,1,2,... define M(k) to be the lower unit triangular block array
/I_k 0\
\ 0 M/
having the k X k identity matrix I_k as the upper left block; in particular, M(0) = M. The infinite matrix product M(0)*M(1)*M(2)*..., which is clearly well-defined, is equal to A059298. (End)

Examples

			Array T(m,n) (with rows m >= 1 and columns n >= 1) begins as follows:
   1   1   1   1   1   1 ...
   2   4   6   8  10  12 ...
   3   9  18  30  45  63 ...
   4  16  40  80 140 224 ...
   5  25  75 175 350 630 ...
   ...
Triangle S(n,k) = T(n-k+1, k+1) begins
.n\k.|....0....1....2....3....4....5....6
= = = = = = = = = = = = = = = = = = = = =
..0..|....1
..1..|....2....1
..2..|....3....4....1
..3..|....4....9....6....1
..4..|....5...16...18....8....1
..5..|....6...25...40...30...10....1
..6..|....7...36...75...80...45...12....1
...
		

Crossrefs

Rows include A045943. Columns include A002411, A027810.
Main diagonal is A037965. Subdiagonals include A002457.
Antidiagonal sums are A001792.
See A103283 for a signed version.
Cf. A103406, A059298, A073107 (unsigned inverse).

Programs

  • GAP
    nmax:=14;; T:=List([1..nmax],n->List([1..nmax],k->k*Binomial(n+k-2,n-1)));;
    b:=List([2..nmax],n->OrderedPartitions(n,2));;
    a:=Flat(List([1..Length(b)],i->List([1..Length(b[i])],j->T[b[i][j][1]][b[i][j][2]]))); # Muniru A Asiru, Aug 07 2018
    
  • Mathematica
    nmax = 10;
    T = Transpose[CoefficientList[# + O[z]^(nmax+1), z]& /@ CoefficientList[(1 - x z)/(1 - z - x z)^2 + O[x]^(nmax+1), x]];
    row[n_] := T[[n+1, 1 ;; n+1]];
    Table[row[n], {n, 0, nmax}] // Flatten (* Jean-François Alcover, Aug 07 2018 *)
  • Sage
    # uses[riordan_array from A256893]
    riordan_array((1+x)*exp(x), x, 8, exp=true) # Peter Luschny, Nov 02 2019

Formula

Triangle = P*M, the binomial transform of the infinite bidiagonal matrix M with (1,1,1,...) in the main diagonal and (1,2,3,...) in the subdiagonal, and zeros elsewhere. P = Pascal's triangle as an infinite lower triangular matrix. - Gary W. Adamson, Nov 05 2006
From Peter Bala, Sep 20 2012: (Start)
E.g.f. for triangle: (1 + z)*exp((1 + x)*z) = 1 + (2 + x)*z + (3 + 4*x + x^2)*z^2/2! + ....
O.g.f. for triangle: (1 - x*z)/(1 - z - x*z)^2 = 1 + (2 + x)*z + (3 + 4*x + x^2)*z^2 + ....
The n-th row polynomial R(n,x) of the triangle equals (1+x)^n + n*(1+x)^(n-1) for n >= 0 and satisfies d/dx(R(n,x)) = n*R(n-1,x), as well as R(n,x+y) = Sum_{k = 0..n} binomial(n,k)*R(k,x)*y^(n-k). The row polynomials are a Sheffer sequence of Appell type.
Matrix inverse of the triangle is a signed version of A073107. (End)
From Tom Copeland, Oct 20 2015: (Start)
With offset 0 and D = d/dx, the raising operator for the signed row polynomials P(n,x) is RP = x - d{log[e^D/(1-D)]}/dD = x - 1 - 1/(1-D) = x - 2 - D - D^2 + ..., i.e., RP P(n,x) = P(n+1,x).
The e.g.f. for the signed array is (1-t) * e^(-t) * e^(x*t).
From the Appell formalism, the row polynomials PI(n,x) of A073107 are the umbral inverse of this entry's row polynomials; that is, P(n,PI(.,x)) = x^n = PI(n,P(.,x)) under umbral composition. (End)
From Petros Hadjicostas, Nov 01 2019: (Start)
As a triangle, we let S(n,k) = T(n-k+1, k+1) = (n-k+1)*binomial(n, k) for n >= 0 and 0 <= k <= n. See the example below.
As stated above by Peter Bala, Sum_{n,k >= 0} S(n,k)*z^n*x^k = (1 - x*z)/(1 - z -x*z)^2.
Also, Sum_{n, k >= 0} S(n,k)*z^n*x^k/n! = (1+z)*exp((1+x)*z).
As he also states, the n-th row polynomial is R(n,x) = Sum_{k = 0..n} S(n, k)*x^k = (1 + x)^n + n*(1 + x)^(n-1).
If we define the signed triangle S*(n,k) = (-1)^(n+k) * S(n,k) = (-1)^(n+k) * T(n-k+1, k+1), as Tom Copeland states, Sum_{n,k >= 0} S^*(n,k)*t^n*x^k/n! = (1-t)*exp((1-x)*(-t)) = (1-t) * e^(-t) * e^(x*t).
Apparently, S*(n,k) = A103283(n,k).
As he says above, the signed n-th row polynomial is P(n,x) = (-1)^n*R(n,-x) = (x - 1)^n - n*(x - 1)^(n-1).
According to Gary W. Adamson, P(n,x) is "the monic characteristic polynomial of the n X n matrix with 2's on the diagonal and 1's elsewhere." (End)

A128629 A triangular array generated by moving Pascal sequences to prime positions and embedding new sequences at the nonprime locations. (cf. A007318 and A000040).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 4, 9, 10, 5, 1, 1, 6, 10, 16, 15, 6, 1, 1, 5, 18, 20, 25, 21, 7, 1, 1, 8, 15, 40, 35, 36, 28, 8, 1, 1, 9, 27, 35, 75, 56, 49, 36, 9, 1
Offset: 1

Views

Author

Alford Arnold, Mar 29 2007

Keywords

Comments

The array can be constructed by beginning with A007318 (Pascal's triangle) placing each diagonal on a prime row. The other rows are filled in by mapping the prime factorization of the row number to the known sequences on the prime rows and multiplying term by term.

Examples

			Row six begins 1 6 18 40 75 126 ... because rows two and three are
1 2 3 4 5 6 ...
1 3 6 10 15 21 ...
The array begins
1 1 1 1 1 1 1 1 1 A000012
1 2 3 4 5 6 7 8 9 A000027
1 3 6 10 15 21 28 36 45 A000217
1 4 9 16 25 36 49 64 81 A000290
1 4 10 20 35 56 84 120 165 A000292
1 6 18 40 75 126 196 288 405 A002411
1 5 15 35 70 126 210 330 495 A000332
1 8 27 64 125 216 343 512 729 A000578
1 9 36 100 225 441 784 1296 2025 A000537
1 8 30 80 175 336 588 960 1485 A002417
1 6 21 56 126 252 462 792 1287 A000389
1 12 54 160 375 756 1372 2304 3645 A019582
1 7 28 84 210 462 924 1716 3003 A000579
1 10 45 140 350 756 1470 2640 4455 A027800
1 12 60 200 525 1176 2352 4320 7425 A004302
1 16 81 256 625 1296 2401 4096 6561 A000583
1 8 36 120 330 792 1716 3432 6435 A000580
1 18 108 400 1125 2646 5488 10368 18225 A019584
1 9 45 165 495 1287 3003 6435 12870 A000581
1 16 90 320 875 2016 4116 7680 13365 A119771
1 15 90 350 1050 2646 5880 11880 22275 A001297
1 12 63 224 630 1512 3234 6336 11583 A027810
1 10 55 220 715 2002 5005 11440 24310 A000582
1 24 162 640 1875 4536 9604 18432 32805 A019583
1 16 100 400 1225 3136 7056 14400 27225 A001249
1 14 84 336 1050 2772 6468 13728 27027 A027818
1 27 216 1000 3375 9261 21952 46656 91125 A059827
1 20 135 560 1750 4536 10290 21120 40095 A085284
		

Crossrefs

Cf. A064553 (second diagonal), A080688 (second diagonal resorted).

Programs

  • Maple
    A128629 := proc(n,m) if n = 1 then 1; elif isprime(n) then p := numtheory[pi](n) ; binomial(p+m-1,p) ; else a := 1 ; for p in ifactors(n)[2] do a := a* procname(op(1,p),m)^ op(2,p) ; od: fi; end: # R. J. Mathar, Sep 09 2009

Extensions

A-number added to each row of the examples by R. J. Mathar, Sep 09 2009

A050489 a(n) = C(n)*(10*n + 1) where C(n) = Catalan numbers (A000108).

Original entry on oeis.org

1, 11, 42, 155, 574, 2142, 8052, 30459, 115830, 442442, 1696396, 6525246, 25169452, 97319900, 377096040, 1463921595, 5692584870, 22169259090, 86452604700, 337547269290, 1319388204420, 5162382341220, 20217646564440, 79246770753150, 310866899505084
Offset: 0

Views

Author

Barry E. Williams, Dec 27 1999

Keywords

References

  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.

Crossrefs

Column k=10 of A330965.

Programs

Formula

-(n+1)*(10*n-9)*a(n) + 2*(10*n+1)*(2*n-1)*a(n-1) = 0. - R. J. Mathar, Dec 03 2014
From Stefano Spezia, Feb 16 2020: (Start)
O.g.f.: 2*(1 + sqrt(1 - 4*x) + 16*x)/((1 + sqrt(1 - 4*x))^2*sqrt(1 - 4*x)).
E.g.f.: exp(2*x)*(I_0(2*x) + 9*I_1(2*x)), where I_n(x) is the modified Bessel function of the first kind.
(End)
G.f.: (9 - 16*x - 9*sqrt(1 - 4*x))/(2*x*sqrt(1 - 4*x)). - Amiram Eldar, Jul 08 2023
From Peter Bala, Aug 23 2025: (Start)
a(n) = binomial(2*n, n) + 9*binomial(2*n, n-1) = A000984(n) + 9*A001791(n).
a(n) ~ 4^n * 10/sqrt(Pi*n). (End)

Extensions

Corrected and extended by Harvey P. Dale, Jul 19 2011

A050490 a(n) = C(n)*(11n+1) where C(n) = Catalan numbers (A000108).

Original entry on oeis.org

1, 12, 46, 170, 630, 2352, 8844, 33462, 127270, 486200, 1864356, 7171892, 27665596, 106977600, 414538200, 1609344270, 6258307590, 24373220520, 95050101300, 371125269900, 1450670612820, 5676173948640, 22230262964520, 87137141867100, 341824599040860, 1341897206800752
Offset: 0

Views

Author

Barry E. Williams, Dec 27 1999

Keywords

References

  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.

Crossrefs

Column k=11 of A330965.

Programs

  • Magma
    [Catalan(n)*(11*n+1):n in [0..25] ]; // Marius A. Burtea, Jan 05 2020
  • Mathematica
    Table[CatalanNumber[n](11n+1),{n,0,20}] (* Harvey P. Dale, Jul 12 2018 *)

Formula

From R. J. Mathar, Feb 13 2015: (Start)
5*(n+1)*a(n) + (-29*n-1)*a(n-1) + 18*(2*n-3)*a(n-2) = 0.
-(n+1)*(11*n-10)*a(n) + 2*(11*n+1)*(2*n-1)*a(n-1) = 0. (End)
G.f.: (5 - 9*x - 5*sqrt(1 - 4*x))/(x*sqrt(1 - 4*x)). - Amiram Eldar, Jul 08 2023

Extensions

Terms a(21) and beyond from Andrew Howroyd, Jan 05 2020

A050491 a(n) = C(n)*(12n+1) where C(n) = Catalan numbers (A000108).

Original entry on oeis.org

1, 13, 50, 185, 686, 2562, 9636, 36465, 138710, 529958, 2032316, 7818538, 30161740, 116635300, 451980360, 1754766945, 6824030310, 26577181950, 103647597900, 404703270510, 1581953021220, 6189965556060, 24242879364600, 95027512981050, 372782298576636, 1463445866837052
Offset: 0

Views

Author

Barry E. Williams, Dec 27 1999

Keywords

References

  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.

Crossrefs

Column k=12 of A330965.

Programs

  • Magma
    [Catalan(n)*(12*n+1):n in [0..25] ]; // Marius A. Burtea, Jan 05 2020
  • Mathematica
    Table[CatalanNumber[n] * (12*n + 1), {n, 0, 25}] (* Amiram Eldar, Jul 08 2023 *)

Formula

G.f.: (11 - 20*x - 11*sqrt(1 - 4*x))/(2*x*sqrt(1 - 4*x)). - Amiram Eldar, Jul 08 2023

Extensions

Terms a(21) and beyond from Andrew Howroyd, Jan 05 2020
Showing 1-10 of 12 results. Next