A051922 Duplicate of A027810.
1, 12, 63, 224, 630, 1512, 3234, 6336, 11583, 20020, 33033, 52416, 80444
Offset: 0
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
. 0: 1; . 1: 2, 1; . 2: 3, 4, 2; . 3: 4, 9, 12, 6; . 4: 5, 16, 36, 48, 24; . 5: 6, 25, 80, 180, 240, 120; . 6: 7, 36, 150, 480, 1080, 1440, 720; . 7: 8, 49, 252, 1050, 3360, 7560, 10080, 5040; . 8: 9, 64, 392, 2016, 8400, 26880, 60480, 80640, 40320; . 9: 10, 81, 576, 3528, 18144, 75600, 241920, 544320, 725760, 362880.
a245334 n k = a245334_tabl !! n !! k a245334_row n = a245334_tabl !! n a245334_tabl = iterate (\row@(h:_) -> (h + 1) : map (* h) row) [1]
Table[(n!)/((n - k)!)*(n + 1 - k), {n, 0, 9}, {k, 0, n}] // Flatten (* Michael De Vlieger, Sep 10 2017 *)
Triangle begins as: 1; 1, 5; 1, 12, 15; 1, 21, 63, 35; 1, 32, 168, 224, 70; 1, 45, 360, 840, 630, 126; 1, 60, 675, 2400, 3150, 1512, 210; 1, 77, 1155, 5775, 11550, 9702, 3234, 330; 1, 96, 1848, 12320, 34650, 44352, 25872, 6336, 495; 1, 117, 2808, 24024, 90090, 162162, 144144, 61776, 11583, 715; 1, 140, 4095, 43680, 210210, 504504, 630630, 411840, 135135, 20020, 1001;
A062264:= func< n,k | Binomial(n,k)*Binomial(n+4,k) >; [A062264(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 03 2025
A062264[n_, k_]:= Binomial[n,k]*Binomial[n+4,k]; Table[A062264[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 03 2025 *)
def A062264(n,k): return binomial(n,k)*binomial(n+4,k) print(flatten([[A062264(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Mar 03 2025
Triangle begins 1; 6, 1; 6, 7, 1; 6, 13, 8, 1; 6, 19, 21, 9, 1; 6, 25, 40, 30, 10, 1; ...
a093563 n k = a093563_tabl !! n !! k a093563_row n = a093563_tabl !! n a093563_tabl = [1] : iterate (\row -> zipWith (+) ([0] ++ row) (row ++ [0])) [6, 1] -- Reinhard Zumkeller, Aug 31 2014
lim = 11; s = Series[(1 + 5*x)/(1 - x)^(m + 1), {x, 0, lim}]; t = Table[ CoefficientList[s, x], {m, 0, lim}]; Flatten[ Table[t[[j - k + 1, k]], {j, lim + 1}, {k, j, 1, -1}]] (* Jean-François Alcover, Sep 16 2011, after g.f. *)
from math import comb, isqrt def A093563(n): return comb(r:=(m:=isqrt(k:=n+1<<1))-(k<=m*(m+1)),a:=n-comb(r+1,2))*(r+5*(r-a))//r if n else 1 # Chai Wah Wu, Nov 12 2024
List([0..30], n-> (6*n+7)*Binomial(n+6,6)/7); # G. C. Greubel, Aug 28 2019
[(6*n+7)*Binomial(n+6,6)/7: n in [0..40]]; // Vincenzo Librandi, Jul 30 2014
seq((6*n+7)*binomial(n+6,6)/7, n=0..30); # G. C. Greubel, Aug 28 2019
Accumulate[Table[(n+1)Binomial[n+5,5],{n,0,30}]] (* or *) LinearRecurrence[{8,-28,56,-70,56,-28,8,-1}, {1,13,76,300,930,2442,5676, 12012}, 30] (* Harvey P. Dale, Jul 29 2014 *) CoefficientList[Series[(1+5x)/(1-x)^8, {x,0,40}], x] (* Vincenzo Librandi, Jul 30 2014 *)
a(n)=(6*n/7+1)*binomial(n+6,6) \\ Charles R Greathouse IV, Oct 07 2015
[(6*n+7)*binomial(n+6,6)/7 for n in (0..30)] # G. C. Greubel, Aug 28 2019
Array T(m,n) (with rows m >= 1 and columns n >= 1) begins as follows: 1 1 1 1 1 1 ... 2 4 6 8 10 12 ... 3 9 18 30 45 63 ... 4 16 40 80 140 224 ... 5 25 75 175 350 630 ... ... Triangle S(n,k) = T(n-k+1, k+1) begins .n\k.|....0....1....2....3....4....5....6 = = = = = = = = = = = = = = = = = = = = = ..0..|....1 ..1..|....2....1 ..2..|....3....4....1 ..3..|....4....9....6....1 ..4..|....5...16...18....8....1 ..5..|....6...25...40...30...10....1 ..6..|....7...36...75...80...45...12....1 ...
nmax:=14;; T:=List([1..nmax],n->List([1..nmax],k->k*Binomial(n+k-2,n-1)));; b:=List([2..nmax],n->OrderedPartitions(n,2));; a:=Flat(List([1..Length(b)],i->List([1..Length(b[i])],j->T[b[i][j][1]][b[i][j][2]]))); # Muniru A Asiru, Aug 07 2018
nmax = 10; T = Transpose[CoefficientList[# + O[z]^(nmax+1), z]& /@ CoefficientList[(1 - x z)/(1 - z - x z)^2 + O[x]^(nmax+1), x]]; row[n_] := T[[n+1, 1 ;; n+1]]; Table[row[n], {n, 0, nmax}] // Flatten (* Jean-François Alcover, Aug 07 2018 *)
# uses[riordan_array from A256893] riordan_array((1+x)*exp(x), x, 8, exp=true) # Peter Luschny, Nov 02 2019
Row six begins 1 6 18 40 75 126 ... because rows two and three are 1 2 3 4 5 6 ... 1 3 6 10 15 21 ... The array begins 1 1 1 1 1 1 1 1 1 A000012 1 2 3 4 5 6 7 8 9 A000027 1 3 6 10 15 21 28 36 45 A000217 1 4 9 16 25 36 49 64 81 A000290 1 4 10 20 35 56 84 120 165 A000292 1 6 18 40 75 126 196 288 405 A002411 1 5 15 35 70 126 210 330 495 A000332 1 8 27 64 125 216 343 512 729 A000578 1 9 36 100 225 441 784 1296 2025 A000537 1 8 30 80 175 336 588 960 1485 A002417 1 6 21 56 126 252 462 792 1287 A000389 1 12 54 160 375 756 1372 2304 3645 A019582 1 7 28 84 210 462 924 1716 3003 A000579 1 10 45 140 350 756 1470 2640 4455 A027800 1 12 60 200 525 1176 2352 4320 7425 A004302 1 16 81 256 625 1296 2401 4096 6561 A000583 1 8 36 120 330 792 1716 3432 6435 A000580 1 18 108 400 1125 2646 5488 10368 18225 A019584 1 9 45 165 495 1287 3003 6435 12870 A000581 1 16 90 320 875 2016 4116 7680 13365 A119771 1 15 90 350 1050 2646 5880 11880 22275 A001297 1 12 63 224 630 1512 3234 6336 11583 A027810 1 10 55 220 715 2002 5005 11440 24310 A000582 1 24 162 640 1875 4536 9604 18432 32805 A019583 1 16 100 400 1225 3136 7056 14400 27225 A001249 1 14 84 336 1050 2772 6468 13728 27027 A027818 1 27 216 1000 3375 9261 21952 46656 91125 A059827 1 20 135 560 1750 4536 10290 21120 40095 A085284
A128629 := proc(n,m) if n = 1 then 1; elif isprime(n) then p := numtheory[pi](n) ; binomial(p+m-1,p) ; else a := 1 ; for p in ifactors(n)[2] do a := a* procname(op(1,p),m)^ op(2,p) ; od: fi; end: # R. J. Mathar, Sep 09 2009
[Catalan(n)*(10*n+1):n in [0..30] ]; // Marius A. Burtea, Jan 05 2020
Table[CatalanNumber[n](10n+1),{n,0,30}] (* Harvey P. Dale, Jul 19 2011 *)
a(n)=binomial(2*n,n)/(n+1)*(10*n+1) \\ Charles R Greathouse IV, Oct 23 2023
[Catalan(n)*(11*n+1):n in [0..25] ]; // Marius A. Burtea, Jan 05 2020
Table[CatalanNumber[n](11n+1),{n,0,20}] (* Harvey P. Dale, Jul 12 2018 *)
[Catalan(n)*(12*n+1):n in [0..25] ]; // Marius A. Burtea, Jan 05 2020
Table[CatalanNumber[n] * (12*n + 1), {n, 0, 25}] (* Amiram Eldar, Jul 08 2023 *)
Comments