A027873 a(n) = Product_{i=1..n} (6^i - 1).
1, 5, 175, 37625, 48724375, 378832015625, 17674407688984375, 4947685316415841015625, 8310206472731792807458984375, 83747726219216824716765369541015625
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..50
Crossrefs
Programs
-
Magma
[1] cat [&*[ 6^k-1: k in [1..n] ]: n in [1..11]]; // Vincenzo Librandi, Dec 24 2015
-
Mathematica
Table[Product[(6^k-1),{k,1,n}],{n,0,20}] (* Vaclav Kotesovec, Jul 17 2015 *) Abs@QPochhammer[6, 6, Range[0, 10]] (* Vladimir Reshetnikov, Nov 20 2015 *) FoldList[Times,Join[{1},6^Range[10]-1]] (* Harvey P. Dale, Oct 13 2017 *)
-
PARI
a(n) = prod(i=1, n, 6^i-1); \\ Michel Marcus, Nov 21 2015
Formula
5^n|a(n) for n>=0. - G. C. Greubel, Nov 20 2015
a(n) ~ c * 6^(n*(n+1)/2), where c = Product_{k>=1} (1-1/6^k) = A132034 = 0.805687728162164940923750215496298968917997628693... . - Vaclav Kotesovec, Nov 21 2015
a(n) = 6^(binomial(n+1,2))*(1/6;1/6){n}, where (a;q){n} is the q-Pochhammer symbol. - G. C. Greubel, Dec 24 2015
a(n) = Product_{i=1..n} A024062(i). - Michel Marcus, Dec 27 2015
G.f.: Sum_{n>=0} 6^(n*(n+1)/2)*x^n / Product_{k=0..n} (1 + 6^k*x). - Ilya Gutkovskiy, May 22 2017
Sum_{n>=0} (-1)^n/a(n) = A132034. - Amiram Eldar, May 07 2023