A294356
E.g.f.: Product_{k>0} (1+x^k)^(-1/k).
Original entry on oeis.org
1, -1, 1, -5, 23, -119, 619, -4759, 48145, -476657, 4249961, -48286061, 691331431, -9132207655, 117900772963, -2025161870159, 37607411624609, -628236985455329, 10768798391659345, -215626810984559317, 4751529623277906871, -105427459848063440471
Offset: 0
-
nmax = 20; CoefficientList[Series[Product[1/(1+x^k)^(1/k), {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Oct 29 2017 *)
-
N=66; x='x+O('x^N); Vec(serlaplace(prod(k=1, N, 1/(1+x^k)^(1/k))))
A295792
Expansion of e.g.f. Product_{k>=1} ((1 + x^k)/(1 - x^k))^(1/k).
Original entry on oeis.org
1, 2, 6, 28, 152, 1008, 7936, 70208, 689664, 7618816, 92013824, 1202362368, 17053410304, 258928934912, 4197838491648, 72840915607552, 1334630802489344, 25799982480556032, 527187369241870336, 11292834065764450304, 253498950169144590336, 5965951790211865772032, 146341359815078034538496
Offset: 0
-
a:=series(mul(((1+x^k)/(1-x^k))^(1/k),k=1..100),x=0,23): seq(n!*coeff(a,x,n),n=0..22); # Paolo P. Lava, Mar 27 2019
-
nmax = 22; CoefficientList[Series[Product[((1 + x^k)/(1 - x^k))^(1/k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
A294402
E.g.f.: exp(-Sum_{n>=1} d(n) * x^n), where d(n) is the number of divisors of n.
Original entry on oeis.org
1, -1, -3, -1, 1, 279, 301, 12263, 5601, -431281, -2140739, -77720721, -1755429983, -12569445721, 85768062381, -4458503862121, 43351731658561, 546719071653663, 31735514726673661, 291860504886837599, 5860390638855992001, 208620917963122666679
Offset: 0
E.g.f.: exp(-Sum_{n>=1} sigma_k(n) * x^n): this sequence (k=0),
A294403 (k=1),
A294404 (k=2).
A294463
E.g.f.: Product_{k>0} (1-k*x^k)^(1/k).
Original entry on oeis.org
1, -1, -2, 0, -12, 180, -1080, 15120, -45360, -15120, 6501600, 166320000, -6017457600, 73297224000, 724669545600, -32528399904000, 169180371360000, 6794185638240000, -119705492402496000, 2601008778880512000, -119160456995099520000
Offset: 0
A345751
E.g.f.: Product_{k>=1} (1 - (exp(x) - 1)^k)^(1/k).
Original entry on oeis.org
1, -1, -2, -3, -3, 40, 477, 4375, 45154, 486817, 5002397, 54970652, 732601449, 10046371231, 113632306694, 1051655108629, 12585372336141, 202763995934160, -863641466773595, -247388278229558697, -10810815349601723990, -311011007642247422759
Offset: 0
-
max = 21; Range[0, max]! * CoefficientList[Series[Product[(1 - (Exp[x] - 1)^k)^(1/k), {k, 1, max}], {x, 0, max}], x] (* Amiram Eldar, Jun 26 2021 *)
-
my(N=40, x='x+O('x^N)); Vec(serlaplace(prod(k=1, N, (1-(exp(x)-1)^k)^(1/k))))
-
my(N=40, x='x+O('x^N)); Vec(serlaplace(exp(-sum(k=1, N, numdiv(k)*(exp(x)-1)^k/k))))
A345762
E.g.f.: Product_{k>=1} (1 - x^k)^(1/k!).
Original entry on oeis.org
1, -1, -1, 2, 0, 29, -135, 727, -1967, -6074, 94510, 1548051, -41361089, 408842095, 213929807, -41951737904, 130060640466, 10569226878107, -229371598130229, 3327344803563111, -31418096993670379, -383829978086171112, 17799865170898698140, 220582224147105677385
Offset: 0
-
my(N=40, x='x+O('x^N)); Vec(serlaplace(prod(k=1, N, (1-x^k)^(1/k!))))
-
my(N=40, x='x+O('x^N)); Vec(serlaplace(exp(-sum(k=1, N, (exp(x^k)-1)/k))))
-
my(N=40, x='x+O('x^N)); Vec(serlaplace(exp(-sum(k=1, N, sumdiv(k, d, 1/(d-1)!)*x^k/k))))
-
a(n) = if(n==0, 1, -(n-1)!*sum(k=1, n, sumdiv(k, d, 1/(d-1)!)*a(n-k)/(n-k)!));
A013643
Numbers k such that the continued fraction for sqrt(k) has period 3.
Original entry on oeis.org
41, 130, 269, 370, 458, 697, 986, 1313, 1325, 1613, 1714, 2153, 2642, 2834, 3181, 3770, 4409, 4778, 4933, 5098, 5837, 5954, 6626, 7465, 7610, 8354, 9293, 10282, 10865, 11257, 11321, 12410, 13033, 13549, 14698, 14738, 15977, 17266, 17989
Offset: 1
- Kenneth H. Rosen, Elementary Number Theory and Its Applications, Addison-Wesley, 1984, page 426 (but beware of errors in this reference!).
-
cfp3Q[n_]:=Module[{s=Sqrt[n]},If[IntegerQ[s],1,Length[ ContinuedFraction[ s][[2]]]==3]]; Select[Range[18000],cfp3Q] (* Harvey P. Dale, May 30 2019 *)
A299033
a(n) = n! * [x^n] Product_{k>=1} (1 - x^k)^(n/k).
Original entry on oeis.org
1, -1, 0, 15, -136, 885, -4896, 43085, -787200, 7775271, 326355200, -22138191801, 781498160640, -18924340012435, 239123351330304, 5915023788331125, -568462201562300416, 25327272129182225295, -795994018378027868160, 15538852668590468027711
Offset: 0
The table of coefficients of x^k in expansion of e.g.f. Product_{k>=1} (1 - x^k)^(n/k) begins:
n = 0: (1), 0, 0, 0, 0, 0, 0, ...
n = 1: 1, (-1), -1, 1, -1, 41, -131, ...
n = 2: 1, -2, (0), 8, -4, 72, -704, ...
n = 3: 1, -3, 3, (15), -45, 63, -1539, ...
n = 4: 1, -4, 8, 16, (-136), 224, -1856, ...
n = 5: 1, -5, 15, 5, -265, (885), -2075, ...
n = 6: 1, -6, 24, -24, -396, 2376, (-4896), ...
-
Table[n! SeriesCoefficient[Product[(1 - x^k)^(n/k), {k, 1, n}], {x, 0, n}], {n, 0, 19}]
A294616
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f.: Product_{j>0} (1-j^k*x^j)^(1/j).
Original entry on oeis.org
1, 1, -1, 1, -1, -1, 1, -1, -2, 1, 1, -1, -4, 0, -1, 1, -1, -8, -6, -12, 41, 1, -1, -16, -30, -72, 180, -131, 1, -1, -32, -114, -360, 840, -1080, 1499, 1, -1, -64, -390, -1656, 4200, -8640, 15120, -4159, 1, -1, -128, -1266, -7272, 22440, -69120, 161280, -45360
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
-1, -1, -1, -1, -1, -1, ...
-1, -2, -4, -8, -16, -32, ...
1, 0, -6, -30, -114, -390, ...
-1, -12, -72, -360, -1656, -7272, ...
41, 180, 840, 4200, 22440, 126600, ...
A304496
Expansion of e.g.f. Product_{k>=1} (1 - x^k)^H(k), where H(k) is the k-th harmonic number.
Original entry on oeis.org
1, -1, -3, -2, 3, 261, 745, 12412, 16289, -260081, -5424199, -96985734, -2047127621, -17402659299, -84365982987, -2937186832544, 39650368238977, 1047895936025183, 35975009604881845, 638531451763185398, 14668256344792565331, 248159858571597211093, 6320237684944085611809
Offset: 0
-
nmax = 22; CoefficientList[Series[Product[(1 - x^k)^HarmonicNumber[k], {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
a[n_] := a[n] = If[n == 0, 1, Sum[-Sum[d HarmonicNumber[d], {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[n! a[n], {n, 0, 22}]
Showing 1-10 of 11 results.
Comments