cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A294356 E.g.f.: Product_{k>0} (1+x^k)^(-1/k).

Original entry on oeis.org

1, -1, 1, -5, 23, -119, 619, -4759, 48145, -476657, 4249961, -48286061, 691331431, -9132207655, 117900772963, -2025161870159, 37607411624609, -628236985455329, 10768798391659345, -215626810984559317, 4751529623277906871, -105427459848063440471
Offset: 0

Views

Author

Seiichi Manyama, Oct 29 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Product[1/(1+x^k)^(1/k), {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Oct 29 2017 *)
  • PARI
    N=66; x='x+O('x^N); Vec(serlaplace(prod(k=1, N, 1/(1+x^k)^(1/k))))

A295792 Expansion of e.g.f. Product_{k>=1} ((1 + x^k)/(1 - x^k))^(1/k).

Original entry on oeis.org

1, 2, 6, 28, 152, 1008, 7936, 70208, 689664, 7618816, 92013824, 1202362368, 17053410304, 258928934912, 4197838491648, 72840915607552, 1334630802489344, 25799982480556032, 527187369241870336, 11292834065764450304, 253498950169144590336, 5965951790211865772032, 146341359815078034538496
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 27 2017

Keywords

Comments

Convolution of A028342 and A168243. - Vaclav Kotesovec, Sep 07 2018

Crossrefs

Programs

  • Maple
    a:=series(mul(((1+x^k)/(1-x^k))^(1/k),k=1..100),x=0,23): seq(n!*coeff(a,x,n),n=0..22); # Paolo P. Lava, Mar 27 2019
  • Mathematica
    nmax = 22; CoefficientList[Series[Product[((1 + x^k)/(1 - x^k))^(1/k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!

Formula

E.g.f.: exp(2*Sum_{k>=1} A001227(k)*x^k/k).
E.g.f.: exp(Sum_{k>=1} A054844(k)*x^k/k).

A294402 E.g.f.: exp(-Sum_{n>=1} d(n) * x^n), where d(n) is the number of divisors of n.

Original entry on oeis.org

1, -1, -3, -1, 1, 279, 301, 12263, 5601, -431281, -2140739, -77720721, -1755429983, -12569445721, 85768062381, -4458503862121, 43351731658561, 546719071653663, 31735514726673661, 291860504886837599, 5860390638855992001, 208620917963122666679
Offset: 0

Views

Author

Seiichi Manyama, Oct 30 2017

Keywords

Crossrefs

E.g.f.: exp(-Sum_{n>=1} sigma_k(n) * x^n): this sequence (k=0), A294403 (k=1), A294404 (k=2).

Programs

  • PARI
    N=66; x='x+O('x^N); Vec(serlaplace(exp(-sum(k=1, N, numdiv(k)*x^k))))

Formula

a(0) = 1 and a(n) = (-1) * (n-1)! * Sum_{k=1..n} k*A000005(k)*a(n-k)/(n-k)! for n > 0.
E.g.f.: Product_{k>=1} (1 - x^k)^f(k), where f(k) = (1/k) * Sum_{j=1..k} gcd(k,j). - Ilya Gutkovskiy, Aug 17 2021

A294463 E.g.f.: Product_{k>0} (1-k*x^k)^(1/k).

Original entry on oeis.org

1, -1, -2, 0, -12, 180, -1080, 15120, -45360, -15120, 6501600, 166320000, -6017457600, 73297224000, 724669545600, -32528399904000, 169180371360000, 6794185638240000, -119705492402496000, 2601008778880512000, -119160456995099520000
Offset: 0

Views

Author

Seiichi Manyama, Oct 31 2017

Keywords

Crossrefs

Programs

  • PARI
    N=66; x='x+O('x^N); Vec(serlaplace(prod(k=1, N, (1-k*x^k)^(1/k))))

Formula

a(0) = 1 and a(n) = -(n-1)! * Sum_{k=1..n} A055225(k)*a(n-k)/(n-k)! for n > 0.
E.g.f.: exp(-Sum_{k>=1} Sum_{j>=1} j^(k-1)*x^(j*k)/k). - Ilya Gutkovskiy, May 28 2018

A345751 E.g.f.: Product_{k>=1} (1 - (exp(x) - 1)^k)^(1/k).

Original entry on oeis.org

1, -1, -2, -3, -3, 40, 477, 4375, 45154, 486817, 5002397, 54970652, 732601449, 10046371231, 113632306694, 1051655108629, 12585372336141, 202763995934160, -863641466773595, -247388278229558697, -10810815349601723990, -311011007642247422759
Offset: 0

Views

Author

Seiichi Manyama, Jun 26 2021

Keywords

Comments

Stirling transform of A028343.

Crossrefs

Programs

  • Mathematica
    max = 21; Range[0, max]! * CoefficientList[Series[Product[(1 - (Exp[x] - 1)^k)^(1/k), {k, 1, max}], {x, 0, max}], x] (* Amiram Eldar, Jun 26 2021 *)
  • PARI
    my(N=40, x='x+O('x^N)); Vec(serlaplace(prod(k=1, N, (1-(exp(x)-1)^k)^(1/k))))
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(serlaplace(exp(-sum(k=1, N, numdiv(k)*(exp(x)-1)^k/k))))

Formula

E.g.f.: exp( -Sum_{k>=1} d(k) * (exp(x) - 1)^k / k ), where d(n) is the number of divisors of n.
a(n) = Sum_{k=0..n} Stirling2(n,k) * A028343(k).

A345762 E.g.f.: Product_{k>=1} (1 - x^k)^(1/k!).

Original entry on oeis.org

1, -1, -1, 2, 0, 29, -135, 727, -1967, -6074, 94510, 1548051, -41361089, 408842095, 213929807, -41951737904, 130060640466, 10569226878107, -229371598130229, 3327344803563111, -31418096993670379, -383829978086171112, 17799865170898698140, 220582224147105677385
Offset: 0

Views

Author

Seiichi Manyama, Jun 26 2021

Keywords

Crossrefs

Programs

  • PARI
    my(N=40, x='x+O('x^N)); Vec(serlaplace(prod(k=1, N, (1-x^k)^(1/k!))))
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(serlaplace(exp(-sum(k=1, N, (exp(x^k)-1)/k))))
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(serlaplace(exp(-sum(k=1, N, sumdiv(k, d, 1/(d-1)!)*x^k/k))))
    
  • PARI
    a(n) = if(n==0, 1, -(n-1)!*sum(k=1, n, sumdiv(k, d, 1/(d-1)!)*a(n-k)/(n-k)!));

Formula

E.g.f.: exp( -Sum_{k>=1} (exp(x^k) - 1)/k ).
E.g.f.: exp( -Sum_{k>=1} A087906(k)*x^k/k! ).
a(n) = -(n-1)! * Sum_{k=1..n} (Sum_{d|k} 1/(d-1)!) * a(n-k)/(n-k)! for n > 0.

A013643 Numbers k such that the continued fraction for sqrt(k) has period 3.

Original entry on oeis.org

41, 130, 269, 370, 458, 697, 986, 1313, 1325, 1613, 1714, 2153, 2642, 2834, 3181, 3770, 4409, 4778, 4933, 5098, 5837, 5954, 6626, 7465, 7610, 8354, 9293, 10282, 10865, 11257, 11321, 12410, 13033, 13549, 14698, 14738, 15977, 17266, 17989
Offset: 1

Views

Author

N. J. A. Sloane, Clark Kimberling, and Walter Gilbert

Keywords

Comments

All numbers of the form (5n+1)^2 + 4n + 1 for n>0 are elements of this sequence. Numbers of the above form have the continued fraction expansion [5n+1,[2,2,10n+2]]. General square roots of integers with period 3 continued fraction expansions have expansions of the form [n,[2m,2m,2n]]. - David Terr, Jun 15 2004

References

  • Kenneth H. Rosen, Elementary Number Theory and Its Applications, Addison-Wesley, 1984, page 426 (but beware of errors in this reference!).

Crossrefs

Programs

  • Mathematica
    cfp3Q[n_]:=Module[{s=Sqrt[n]},If[IntegerQ[s],1,Length[ ContinuedFraction[ s][[2]]]==3]]; Select[Range[18000],cfp3Q] (* Harvey P. Dale, May 30 2019 *)

Formula

The general form of these numbers is d = d(m, n) = a^2 + 4mn + 1, where m and n are positive integers and a = a(m, n) = (4m^2 + 1)n + m, for which the continued fraction expansion of sqrt(d) is [a;[2m, 2m, 2a]]. - David Terr, Jul 20 2004

A299033 a(n) = n! * [x^n] Product_{k>=1} (1 - x^k)^(n/k).

Original entry on oeis.org

1, -1, 0, 15, -136, 885, -4896, 43085, -787200, 7775271, 326355200, -22138191801, 781498160640, -18924340012435, 239123351330304, 5915023788331125, -568462201562300416, 25327272129182225295, -795994018378027868160, 15538852668590468027711
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 01 2018

Keywords

Examples

			The table of coefficients of x^k in expansion of e.g.f. Product_{k>=1} (1 - x^k)^(n/k) begins:
n = 0: (1),  0,    0,    0,     0,      0,      0,  ...
n = 1:  1, (-1),  -1,    1,    -1,     41,   -131,  ...
n = 2:  1,  -2,   (0),   8,    -4,     72,   -704,  ...
n = 3:  1,  -3,    3,  (15),  -45,     63,  -1539,  ...
n = 4:  1,  -4,    8,   16, (-136),   224,  -1856,  ...
n = 5:  1,  -5,   15,    5,  -265,   (885), -2075,  ...
n = 6:  1,  -6,   24,  -24,  -396,   2376, (-4896), ...
		

Crossrefs

Programs

  • Mathematica
    Table[n! SeriesCoefficient[Product[(1 - x^k)^(n/k), {k, 1, n}], {x, 0, n}], {n, 0, 19}]

Formula

a(n) = n! * [x^n] exp(-n*Sum_{k>=1} d(k)*x^k/k), where d(k) is the number of divisors of k (A000005).

A294616 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f.: Product_{j>0} (1-j^k*x^j)^(1/j).

Original entry on oeis.org

1, 1, -1, 1, -1, -1, 1, -1, -2, 1, 1, -1, -4, 0, -1, 1, -1, -8, -6, -12, 41, 1, -1, -16, -30, -72, 180, -131, 1, -1, -32, -114, -360, 840, -1080, 1499, 1, -1, -64, -390, -1656, 4200, -8640, 15120, -4159, 1, -1, -128, -1266, -7272, 22440, -69120, 161280, -45360
Offset: 0

Views

Author

Seiichi Manyama, Nov 05 2017

Keywords

Examples

			Square array begins:
    1,   1,   1,    1,     1,      1, ...
   -1,  -1,  -1,   -1,    -1,     -1, ...
   -1,  -2,  -4,   -8,   -16,    -32, ...
    1,   0,  -6,  -30,  -114,   -390, ...
   -1, -12, -72, -360, -1656,  -7272, ...
   41, 180, 840, 4200, 22440, 126600, ...
		

Crossrefs

Columns k=0..1 give A028343, A294463.
Rows n=0..3 give A000012, (-1)*A000012, (-1)*A000079, (-1)*A245804.
Cf. A294761.

Formula

A(0,k) = 1 and A(n,k) = -(n-1)! * Sum_{j=1..n} (Sum_{d|j} d^(k*j/d)) * A(n-j,k)/(n-j)! for n > 0.

A304496 Expansion of e.g.f. Product_{k>=1} (1 - x^k)^H(k), where H(k) is the k-th harmonic number.

Original entry on oeis.org

1, -1, -3, -2, 3, 261, 745, 12412, 16289, -260081, -5424199, -96985734, -2047127621, -17402659299, -84365982987, -2937186832544, 39650368238977, 1047895936025183, 35975009604881845, 638531451763185398, 14668256344792565331, 248159858571597211093, 6320237684944085611809
Offset: 0

Views

Author

Ilya Gutkovskiy, May 13 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 22; CoefficientList[Series[Product[(1 - x^k)^HarmonicNumber[k], {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
    a[n_] := a[n] = If[n == 0, 1, Sum[-Sum[d HarmonicNumber[d], {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[n! a[n], {n, 0, 22}]

Formula

E.g.f.: Product_{k>=1} (1 - x^k)^(A001008(k)/A002805(k)).
Showing 1-10 of 11 results. Next