A028358 Partial sums of A028357.
1, 4, 10, 20, 33, 48, 64, 82, 103, 128, 156, 186, 217, 250, 286, 326, 369, 414, 460, 508, 559, 614, 672, 732, 793, 856, 922, 992, 1065, 1140, 1216, 1294, 1375, 1460, 1548, 1638, 1729, 1822, 1918, 2018, 2121
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (3,-3,0,3,-3,1).
Programs
-
Mathematica
LinearRecurrence[{3,-3,0,3,-3,1},{1,4,10,20,33,48},50] (* Harvey P. Dale, Jun 14 2021 *) Table[(9 + 72n + 30n^2 + 32Cos[(n + 1)Pi/3] - (-1)^n)/24, {n, 0, 40}] (* Greg Dresden, Jun 22 2021 *)
Formula
G.f.: ( -1-x-x^2-2*x^3 ) / ( (1+x)*(x^2-x+1)*(x-1)^3 ). - R. J. Mathar, Dec 15 2015
a(n) = (9 + 72*n + 30*n^2 + 32*cos((n + 1)*Pi/3) - (-1)^n)/24. - Greg Dresden, Jun 22 2021
Comments