cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A046664 Erroneous version of A028419.

Original entry on oeis.org

0, 1, 8, 29, 79, 174, 338, 597, 984, 1531, 2284, 3285, 4581, 6232, 8294, 10821, 13896
Offset: 1

Views

Author

Keywords

A189978 Number of isosceles triangles, distinct up to congruence, on an n X n grid (or geoboard).

Original entry on oeis.org

0, 1, 5, 11, 22, 35, 53, 70, 100, 126, 159, 188, 237, 276, 328, 372, 439, 491, 564, 623, 706, 775, 859, 931, 1049, 1129, 1231, 1323, 1448, 1540, 1674, 1772, 1928, 2041, 2183, 2301, 2483, 2602, 2758, 2898, 3095
Offset: 1

Views

Author

Martin Renner, May 03 2011

Keywords

Examples

			For n=3 the five isosceles triangles are:
**.  *.*  .*.  ..*  *..
*..  ...  *..  *..  ..*
...  *..  .*.  ..*  .*.
		

Crossrefs

Programs

  • Maple
    Triangles:=proc(n) local TriangleSet,i,j,k,l,A,B,C; TriangleSet:={}: for i from 0 to n do for j from 0 to n do for k from 0 to n do for l from 0 to n do A:=i^2+j^2: B:=k^2+l^2: C:=(i-k)^2+(j-l)^2: if A^2+B^2+C^2<>2*(A*B+B*C+C*A) then TriangleSet:={op(TriangleSet),sort([sqrt(A),sqrt(B),sqrt(C)])}: fi: od: od: od: od: return(TriangleSet); end:
    IsIsoscelesTriangle:=proc(T) if T[1]=T[2] or T[1]=T[3] or T[2]=T[3] then true else false fi: end:
    a:=proc(n) local TriangleSet,IsoscelesTriangleSet,i;
    TriangleSet:=Triangles(n): IsoscelesTriangleSet:={}: for i from 1 to nops(TriangleSet) do if IsIsoscelesTriangle(TriangleSet[i]) then IsoscelesTriangleSet:={op(IsoscelesTriangleSet),TriangleSet[i]} fi: od: return(nops(IsoscelesTriangleSet)); end:

Extensions

a(21)-a(40) from Martin Renner, May 08 2011

A189979 Number of right triangles, distinct up to congruence, on an n X n grid (or geoboard).

Original entry on oeis.org

0, 1, 4, 9, 17, 26, 39, 53, 71, 91, 114, 136, 169, 197, 231, 267, 310, 346, 397, 437, 492, 548, 606, 654, 729, 791, 858, 928, 1007, 1071, 1173, 1241, 1333, 1423, 1509, 1600, 1728, 1814, 1912, 2015, 2144
Offset: 1

Views

Author

Martin Renner, May 03 2011

Keywords

Examples

			For n=3 the four right triangles are:
**.  *.*  *.*  .*.
*..  *..  ...  *..
...  ...  *..  .*.
		

Crossrefs

Programs

  • Maple
    Triangles:=proc(n) local TriangleSet,i,j,k,l,A,B,C; TriangleSet:={}: for i from 0 to n do for j from 0 to n do for k from 0 to n do for l from 0 to n do A:=i^2+j^2: B:=k^2+l^2: C:=(i-k)^2+(j-l)^2: if A^2+B^2+C^2<>2*(A*B+B*C+C*A) then TriangleSet:={op(TriangleSet),sort([sqrt(A),sqrt(B),sqrt(C)])}: fi: od: od: od: od: return(TriangleSet); end:
    IsRectangularTriangle:=proc(T) if T[1]^2+T[2]^2=T[3]^2 or T[1]^2+T[3]^2=T[2]^2 or T[2]^2+T[3]^2=T[1]^2 then true else false fi: end:
    a:=proc(n) local TriangleSet,RectangularTriangleSet,i; TriangleSet:=Triangles(n): RectangularTriangleSet:={}: for i from 1 to nops(TriangleSet) do if IsRectangularTriangle(TriangleSet[i]) then RectangularTriangleSet:={op(RectangularTriangleSet),TriangleSet[i]} fi: od: return(nops(RectangularTriangleSet)); end:

Extensions

a(21) through a(40) from Martin Renner, May 08 2011

A241231 Number of triangles, distinct up to congruence, on a centered hexagonal grid of size n.

Original entry on oeis.org

0, 4, 34, 134, 379, 866, 1718, 3085, 5149, 8095, 12188, 17664, 24781, 33861, 45269, 59327, 76461, 97017, 121458, 150379, 184053, 223137, 268117, 319578, 378132, 444455, 519178, 602675, 696102, 800051, 914995, 1042094, 1181858, 1335414, 1503251, 1686811, 1886417, 2103007
Offset: 1

Views

Author

Martin Renner, Apr 17 2014

Keywords

Comments

A centered hexagonal grid of size n is a grid with A003215(n-1) points forming a hexagonal lattice.

Examples

			For n = 2 the four kinds of non-congruent triangles are the following:
/. *     * *     . *     * .
. * *   . . *   * . *   . . *
\. .     . .     . .     * .
		

Crossrefs

Formula

a(n) = A241232(n) + A241233(n) + A241234(n) = A241236(n) + A241237(n).

Extensions

a(7) from Martin Renner, May 31 2014
a(8)-a(14) from Giovanni Resta, May 31 2014
More terms from Bert Dobbelaere, Oct 17 2022

A190021 Number of acute triangles, distinct up to congruence, on an n X n grid (or geoboard).

Original entry on oeis.org

0, 0, 2, 8, 23, 51, 101, 179, 295, 460, 688, 988, 1382, 1876, 2495, 3258, 4191, 5298, 6613, 8166, 9973, 12065, 14472, 17208, 20341, 23873, 27838, 32282, 37238, 42734, 48840, 55573, 62973, 71067, 79934, 89640, 100172, 111613, 123959, 137336, 151842
Offset: 1

Views

Author

Martin Renner, May 04 2011

Keywords

Examples

			For n = 3 the two acute triangles are:
*..   .*.
..*   *..
*..   ..*
		

Crossrefs

Programs

  • Maple
    Triangles:=proc(n) local TriangleSet, i, j, k, l, A, B, C; TriangleSet:={}: for i from 0 to n do for j from 0 to n do for k from 0 to n do for l from 0 to n do A:=i^2+j^2: B:=k^2+l^2: C:=(i-k)^2+(j-l)^2: if A^2+B^2+C^2<>2*(A*B+B*C+C*A) then TriangleSet:={op(TriangleSet), sort([sqrt(A), sqrt(B), sqrt(C)])}: fi: od: od: od: od: return(TriangleSet); end:
    IsAcuteTriangle:=proc(T) if T[1]^2+T[2]^2>T[3]^2 and T[1]^2+T[3]^2>T[2]^2 and T[2]^2+T[3]^2>T[1]^2 then true else false fi: end:
    a:=proc(n) local TriangleSet,AcuteTriangleSet,i; TriangleSet:=Triangles(n): AcuteTriangleSet:={}: for i from 1 to nops(TriangleSet) do if IsAcuteTriangle(TriangleSet[i]) then AcuteTriangleSet:={op(AcuteTriangleSet),TriangleSet[i]} fi: od: return(nops(AcuteTriangleSet)); end:

Formula

a(n) = A028419(n) - A189979(n) - A190022(n).

Extensions

a(21)-a(40) from Martin Renner, May 08 2011

A190022 Number of obtuse triangles, distinct up to congruence, on an n X n grid (or geoboard).

Original entry on oeis.org

0, 0, 2, 12, 39, 95, 193, 355, 597, 943, 1426, 2071, 2904, 3977, 5306, 6956, 8963, 11370, 14225, 17587, 21515, 26053, 31310, 37282, 44061, 51785, 60436, 70127, 80939, 92952, 106267, 120982, 137124, 154841, 174225, 195366, 218394, 243457, 270505, 299749, 331441
Offset: 1

Views

Author

Martin Renner, May 04 2011

Keywords

Examples

			For n = 3 the two obtuse triangles are:
*..   *..
*..   *..
.*.   ..*
		

Crossrefs

Programs

  • Maple
    Triangles:=proc(n) local TriangleSet, i, j, k, l, A, B, C; TriangleSet:={}: for i from 0 to n do for j from 0 to n do for k from 0 to n do for l from 0 to n do A:=i^2+j^2: B:=k^2+l^2: C:=(i-k)^2+(j-l)^2: if A^2+B^2+C^2<>2*(A*B+B*C+C*A) then TriangleSet:={op(TriangleSet), sort([sqrt(A), sqrt(B), sqrt(C)])}: fi: od: od: od: od: return(TriangleSet); end:
    IsObtuseTriangle:=proc(T) if T[1]^2+T[2]^2
    				

Formula

a(n) = A028419(n) - A190021(n) - A189979(n).

Extensions

a(21)-a(40) from Martin Renner, May 08 2011

A190313 Number of scalene triangles, distinct up to congruence, on an n X n grid (or geoboard).

Original entry on oeis.org

0, 0, 3, 18, 57, 137, 280, 517, 863, 1368, 2069, 3007, 4218, 5774, 7704, 10109, 13025, 16523, 20671, 25567, 31274, 37891, 45529, 54213, 64082, 75320, 87901, 102014, 117736, 135217, 154606, 176024, 199502, 225290, 253485, 284305, 317811, 354282, 393618, 436202, 482332
Offset: 1

Views

Author

Martin Renner, May 08 2011

Keywords

Crossrefs

Programs

  • Mathematica
    q[n_] :=
      Module[{sqDist, t0, t1, t2, t3},
       (*Squared distances*)
       sqDist = {p_,q_} :> (Floor[p/n] - Floor[q/n])^2 + (Mod[p, n] - Mod[q, n])^2;
       (*Triads of points*)
       t0 = Subsets[Range[0, n^2 - 1], {3, 3}];
       (* Exclude collinear vertices *)
       t1 = Select[t0,
         Det[Map[{Floor[#/n], Mod[#, n], 1} &, {#[[1]], #[[2]], #[[
               3]]}]] != 0 &];
       (*Calculate sides*)
       t2 = Map[{#,
           Sort[{{#[[2]], #[[3]]}, {#[[3]], #[[1]]}, {#[[1]], #[[2]]}} /.
             sqDist]} &, t1];
       (*Exclude not-scalenes*)
       t2 = Select[
         t2, #[[2, 1]] != #[[2, 2]] && #[[2, 2]] != #[[2, 3]] && #[[2,
              3]] != #[[2, 1]] &];
       (* Find groups of congruent triangles *)
       t3 = GatherBy[Range[Length[t2]], t2[[#, 2]] &];
       Return[Length[t3]];
       ];
    Map[q[#] &, Range[10]] (* César Eliud Lozada, Mar 26 2021 *)

Formula

a(n) = A028419(n) - A189978(n).

A028492 Similarity classes of triangles which can be drawn using the lattice points in an n X n grid for vertices.

Original entry on oeis.org

0, 1, 6, 20, 55, 119, 229, 402, 667, 1019, 1536, 2216, 3049, 4168, 5546, 7203, 9278, 11755, 14597, 18054, 22138, 26625, 31958, 38120, 44821, 52764, 61663, 71204, 82250, 94479, 107680, 122740, 139224, 156699, 176450, 198176, 220883
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A028419.

Extensions

Extended by Ray Chandler, May 03 2011

A190309 Number of acute isosceles triangles, distinct up to congruence, on an n X n grid (or geoboard).

Original entry on oeis.org

0, 0, 2, 5, 11, 19, 29, 40, 58, 74, 94, 113, 141, 168, 201, 227, 267, 304, 348, 390, 438, 483, 537, 590, 657, 709, 776, 837, 913, 979, 1057, 1130, 1225, 1299, 1396, 1472, 1576, 1663, 1768, 1863, 1974
Offset: 1

Views

Author

Martin Renner, May 08 2011

Keywords

Crossrefs

Formula

a(n) = A189978(n) - A190310(n) - A108279(n).

A190310 Number of obtuse isosceles triangles, distinct up to congruence, on an n X n grid (or geoboard).

Original entry on oeis.org

0, 0, 0, 1, 3, 5, 9, 12, 19, 24, 32, 37, 51, 57, 69, 80, 99, 107, 127, 136, 161, 176, 196, 207, 246, 262, 286, 306, 343, 357, 399, 414, 460, 485, 517, 544, 605, 623, 659, 689, 757
Offset: 1

Views

Author

Martin Renner, May 08 2011

Keywords

Crossrefs

Formula

a(n) = A189978(n) - A190309(n) - A108279(n).
Showing 1-10 of 10 results.