cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: David J. Rusin

David J. Rusin's wiki page.

David J. Rusin has authored 4 sequences.

A108310 Successive maxima of log(n#)/n where n# is the product of the primes less than n.

Original entry on oeis.org

2, 3, 5, 7, 13, 19, 43, 47, 73, 103, 107, 109, 113, 199, 283, 467, 661, 887, 1063, 1069, 1097, 1103, 1109, 1123, 1129, 1303, 1307, 1321, 1327, 1621, 1627, 2803, 3931, 3947, 4273, 4289, 4297, 5867, 5869, 5881, 6373, 6379, 9439, 9473, 9479, 9497, 9551, 9859
Offset: 1

Author

David J. Rusin, Jun 29 2005

Keywords

Comments

Every entry must be a prime.
Note that log(n#)=theta(n) (the Chebyshev function) for which bounds are known (e.g. Rosser and Schoenfeld have an estimate |theta(n)-n| < n/(40 log n).) In particular, log(n#)/n tends to 1, which allows a proof of the Prime Number Theorem. I suspect log(n#) can be greater than n for some n, which would make the sequence finite, but I do not know an example of such an n. (When n=30337841, 0.9999 < log(n#)/n < 1.)
When n=3745619057, 0.99999312926590387432389345880435140945170798255514 < log(n#)/n < 1. - Robert G. Wilson v, Jul 01 2005
Computational experiments show that it may be true that n > log(n#) for all n. In fact, it appears that, for any k, n > log(n#) + k*log(n) except for a finite number of small primes. For k=1, only 5, 7 and 19 are the exceptional n. This inequality is still consistent with 1 being the limiting value of log(n#)/n. - T. D. Noe, Apr 17 2006
Apparently in the long run (n-theta(n))/(Li(n)-Pi(n)) goes to log(n), so if Li(n)Martin Raab, May 13 2008
Sequence is finite since psi(x) - x is greater than sqrt x * log log log x infinitely often, and hence theta(x) > x infinitely often [but theta(x) - x = o(x), see Rosser & Schoenfeld]. See Hardy & Littlewood section 5. - Charles R Greathouse IV, Aug 02 2012

Examples

			13 follows 7 because log(7#)/7 = log(210)/7 = 0.7638, while log(8#)/8 and so on are smaller but log(13#)/13= 0.7931 is larger. A larger entry is 3445943 since log(n#)<0.99978 n for smaller n but log(3445943#)=3445185.8713457=(0.999780284)(3445943).
		

Crossrefs

Programs

  • Maple
    A:=[]:b:=0:S:=0:n:=1: while true do n:=nextprime(n): S:=S+evalf(log(n)): if S>b*n then A:=[op(A),n]: b:= S/n: fi: od: #Program must be terminated manually! Array "A" is the sequence.
  • Mathematica
    lmt = slp = 0; lst = {}; Do[p = Prime[n]; slp = slp + N[Log[p], 12]; If[slp/p > lmt, lmt = slp/p; AppendTo[lst, p]], {n, 1224}]; lst (* Robert G. Wilson v, Jul 01 2005 *)
  • PARI
    r=th=0; forprime(p=2, 1e6, th+=log(p); t=th/p; if(t>r, r=t; print1(p", "))) \\ Charles R Greathouse IV, Dec 17 2014

Extensions

More terms from Robert G. Wilson v, Jul 01 2005

A028419 Congruence classes of triangles which can be drawn using lattice points in n X n grid as vertices.

Original entry on oeis.org

0, 1, 8, 29, 79, 172, 333, 587, 963, 1494, 2228, 3195, 4455, 6050, 8032, 10481, 13464, 17014, 21235, 26190, 31980, 38666, 46388, 55144, 65131, 76449, 89132, 103337, 119184, 136757, 156280, 177796, 201430, 227331, 255668, 286606, 320294, 356884, 396376, 439100, 485427, 535049, 588457, 645803
Offset: 0

Keywords

Programs

  • Maple
    a:=proc(n) local TriangleSet,i,j,k,l,A,B,C; TriangleSet:={}: for i from 0 to n do for j from 0 to n do for k from 0 to n do for l from 0 to n do A:=i^2+j^2: B:=k^2+l^2: C:=(i-k)^2+(j-l)^2: if A^2+B^2+C^2<>2*(A*B+B*C+C*A) then TriangleSet:={op(TriangleSet),sort([sqrt(A),sqrt(B),sqrt(C)])}: fi: od: od: od: od: return(nops(TriangleSet)); end: # Martin Renner, May 03 2011

Extensions

More terms from Chris Cole (chris(AT)questrel.com), Jun 28 2003
a(36)-a(39) from Martin Renner, May 08 2011

A028492 Similarity classes of triangles which can be drawn using the lattice points in an n X n grid for vertices.

Original entry on oeis.org

0, 1, 6, 20, 55, 119, 229, 402, 667, 1019, 1536, 2216, 3049, 4168, 5546, 7203, 9278, 11755, 14597, 18054, 22138, 26625, 31958, 38120, 44821, 52764, 61663, 71204, 82250, 94479, 107680, 122740, 139224, 156699, 176450, 198176, 220883
Offset: 0

Keywords

Crossrefs

Cf. A028419.

Extensions

Extended by Ray Chandler, May 03 2011

A048290 Numbers m that divide Sum_{k=1..m} phi(k).

Original entry on oeis.org

1, 2, 5, 6, 16, 25, 36, 249, 617, 1296, 13763, 76268, 189074, 783665, 1102394, 3258466, 3808854, 7971034, 15748051, 27746990, 41846733, 153673168, 195853251, 302167272, 402296412, 732683468, 807656448, 844492262, 848152352, 1122039882, 2258200198, 2438160726
Offset: 1

Keywords

Comments

The odd terms of this sequence and A063986 are the same. - Jud McCranie, Jun 26 2005

Examples

			Euler sums are *1*, *2*, 4, 6, *10*, *12*, ..., *80*, ..., *510624*,... for n=1, 2, 3, 4, 5, 6, ..., 16, ...., 1296, ...
		

Crossrefs

Cf. A000010, A002088. See A063986 for n divides Sum_{k=1..n} k-phi(k).

Programs

  • Mathematica
    s = 0; Do[s = s + EulerPhi[n]; If[IntegerQ[s/n], Print[n]], {n, 1, 10^8}]
  • PARI
    list(lim)=my(v=List(),s); for(k=1,lim, s+=eulerphi(k); if(s%k==0, listput(v, k))); Vec(v) \\ Charles R Greathouse IV, Feb 07 2017

Formula

Sum_{k=1..m} phi(k) is about (3/Pi^2)*m^2 [cf. A002088, first formula].
Not obviously infinite; rough heuristics predict about 3/2 log(N) terms less than N, log(N) even ones and log(N)/2 odd ones.

Extensions

10 more terms computed by Dean Hickerson
One more term from Robert G. Wilson v, Sep 07 2001
More terms from Naohiro Nomoto, Mar 22 2002
5 more terms from Jud McCranie, Jun 21 2005