cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A181206 T(n,k) = number of n X k matrices containing a permutation of 1..n*k moving each element at most to a neighboring position.

Original entry on oeis.org

1, 2, 2, 3, 9, 3, 5, 32, 32, 5, 8, 121, 229, 121, 8, 13, 450, 1845, 1845, 450, 13, 21, 1681, 14320, 32000, 14320, 1681, 21, 34, 6272, 112485, 535229, 535229, 112485, 6272, 34, 55, 23409, 880163, 9049169, 19114420, 9049169, 880163, 23409, 55, 89, 87362
Offset: 1

Views

Author

R. H. Hardin, Oct 10 2010

Keywords

Comments

Also, the number of perfect matchings in the graph P_2 X P_k X P_n. - Andrew Howroyd, May 17 2017

Examples

			Table starts:
..1......2.........3............5................8..................13
..2......9........32..........121..............450................1681
..3.....32.......229.........1845............14320..............112485
..5....121......1845........32000...........535229.............9049169
..8....450.....14320.......535229.........19114420...........692276437
.13...1681....112485......9049169........692276437.........53786626921
.21...6272....880163....152526845......24972353440.......4161756233501
.34..23409...6895792...2573281769.....901990734650.....322462050747008
.55..87362..54003765..43402320448...32567565264292...24976513162427653
.89.326041.422983905.732106008249.1176040842289105.1934824269280528177
...
All solutions for 3X2
..1..2....1..2....1..2....1..2....1..2....1..2....1..2....1..2....1..2....1..4
..3..4....4..3....4..3....4..6....3..4....3..6....5..4....5..3....5..6....3..2
..5..6....5..6....6..5....3..5....6..5....5..4....3..6....6..4....3..4....5..6
...
..1..4....1..4....2..1....2..1....2..1....2..1....2..1....2..1....2..1....2..1
..3..2....5..2....4..3....4..3....4..6....3..4....3..4....3..6....5..4....5..3
..6..5....3..6....5..6....6..5....3..5....5..6....6..5....5..4....3..6....6..4
...
..2..1....2..4....2..4....2..4....3..1....3..1....3..1....3..2....3..2....3..2
..5..6....1..3....1..3....1..6....4..2....4..2....5..2....1..4....1..4....1..6
..3..4....5..6....6..5....3..5....5..6....6..5....6..4....5..6....6..5....5..4
...
..3..4....3..4
..1..2....1..2
..5..6....6..5
		

Crossrefs

Main diagonal gives A181205.

A233247 Expansion of ( 1-x^3-x^2 ) / ( (x^3-x^2-1)*(x^3+2*x^2+x-1) ).

Original entry on oeis.org

1, 1, 1, 4, 9, 16, 36, 81, 169, 361, 784, 1681, 3600, 7744, 16641, 35721, 76729, 164836, 354025, 760384, 1633284, 3508129, 7535025, 16184529, 34762816, 74666881, 160376896, 344473600, 739894401, 1589218225, 3413480625, 7331811876, 15747991081, 33825095056
Offset: 0

Views

Author

R. J. Mathar, Dec 06 2013

Keywords

Comments

a(n) is the number of tilings of a 3 X 2 X n room with bricks of 1 X 1 X 3 shape (and in that respect a generalization of A028447 which fills 3 X 2 X n rooms with bricks of 1 X 1 X 2 shape).
The inverse INVERT transform is 1, 0, 3, 2, 2, 4, 4, 6, 8, 10, .. , continued as in A068924.
a(n) is the number of tilings of an n-board (a board with dimensions n X 1) with half-squares (1/2 X 1 pieces, always placed so that the shorter sides are horizontal) and (1/2,1/2;3)-combs. A (w,g;m)-comb is a tile composed of m pieces of dimensions w X 1 separated horizontally by gaps of width g. - Michael A. Allen, Sep 24 2024

Crossrefs

Cf. A000930.

Programs

  • Maple
    A233247 := proc(n)
        A000930(n)^2 ;
    end proc:
    # second Maple program:
    a:= n-> (<<0|1|0>, <0|0|1>, <1|0|1>>^n)[3, 3]^2:
    seq(a(n), n=0..40);  # Alois P. Heinz, Dec 06 2013
  • Mathematica
    Table[Sum[Binomial[n-2i, i], {i,0,n/3}]^2, {n,0,50}] (* Wesley Ivan Hurt, Dec 06 2013 *)
    LinearRecurrence[{1,1,3,1,-1,-1},{1,1,1,4,9,16},40] (* Harvey P. Dale, Jan 14 2015 *)
    CoefficientList[Series[(1-x^3-x^2)/((x^3-x^2-1)*(x^3+2*x^2+x-1)), {x, 0, 50}], x] (* G. C. Greubel, Apr 29 2017 *)
  • PARI
    my(x='x+O('x^50)); Vec((1-x^3-x^2)/((x^3-x^2-1)*(x^3+2*x^2+x-1))) \\ G. C. Greubel, Apr 29 2017

Formula

a(n) = A000930(n)^2.
a(n) = a(n-1) + a(n-3) + 2*Sum_{r=3..n} ( A000931(r+2)*a(n-r) ). - Michael A. Allen, Sep 24 2024
Showing 1-2 of 2 results.