cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A005664 Denominators of convergents to log_2 3.

Original entry on oeis.org

1, 1, 2, 5, 12, 41, 53, 306, 665, 15601, 31867, 79335, 111202, 190537, 10590737, 10781274, 53715833, 171928773, 225644606, 397573379, 6189245291, 6586818670, 65470613321, 137528045312, 753110839881, 5409303924479, 6162414764360
Offset: 0

Views

Author

Keywords

Examples

			log_2 3 = 1.5849625007211561814537389439...
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    Convergents[Log[2, 3], 30] // Denominator (* Jean-François Alcover, Dec 12 2016 *)
  • PARI
    a(n) = component(component(contfracpnqn(contfrac(log(3)/log(2), n)), 1), 2) \\ Michel Marcus, May 20 2013

Extensions

More terms from James Sellers, Sep 16 2000

A005663 Numerators of convergents to log_2(3) = log(3)/log(2).

Original entry on oeis.org

1, 2, 3, 8, 19, 65, 84, 485, 1054, 24727, 50508, 125743, 176251, 301994, 16785921, 17087915, 85137581, 272500658, 357638239, 630138897, 9809721694, 10439860591, 103768467013, 217976794617, 1193652440098, 8573543875303
Offset: 0

Views

Author

Keywords

Examples

			log_2(3) = 1.5849625007211561814537389439...
		

References

  • R. K. Guy, personal communication.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    Numerator[Convergents[Log[2,3],30]] (* Harvey P. Dale, Sep 10 2015 *)
  • PARI
    a(n) = component(component(contfracpnqn(contfrac(log(3)/log(2), n)), 1), 1) \\ Michel Marcus, May 20 2013

Extensions

More terms from James Sellers, Sep 16 2000

A206788 Denominators of semiconvergents to log_2(3), which equals log(3)/log(2).

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 12, 17, 29, 41, 53, 94, 147, 200, 253, 306, 359, 665, 971, 1636, 2301, 2966, 3631, 4296, 4961, 5626, 6291, 6956, 7621, 8286, 8951, 9616, 10281, 10946, 11611, 12276, 12941, 13606, 14271, 14936, 15601, 16266, 31867, 47468, 79335, 111202, 190537
Offset: 1

Views

Author

Keenan Pepper, Feb 12 2012

Keywords

Comments

These are also equal divisions of the octave that have good approximations of the 3rd harmonic (and hence other Pythagorean intervals such as 3/2, 4/3, 9/8 etc.).
The semiconvergents are important musically as the cardinalities of MOS scales of Pythagorean tuning.

Crossrefs

Cf. A028507 (continued fraction expansion), A005664 (denominators of convergents).
Showing 1-3 of 3 results.