cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A005664 Denominators of convergents to log_2 3.

Original entry on oeis.org

1, 1, 2, 5, 12, 41, 53, 306, 665, 15601, 31867, 79335, 111202, 190537, 10590737, 10781274, 53715833, 171928773, 225644606, 397573379, 6189245291, 6586818670, 65470613321, 137528045312, 753110839881, 5409303924479, 6162414764360
Offset: 0

Views

Author

Keywords

Examples

			log_2 3 = 1.5849625007211561814537389439...
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    Convergents[Log[2, 3], 30] // Denominator (* Jean-François Alcover, Dec 12 2016 *)
  • PARI
    a(n) = component(component(contfracpnqn(contfrac(log(3)/log(2), n)), 1), 2) \\ Michel Marcus, May 20 2013

Extensions

More terms from James Sellers, Sep 16 2000

A221363 Decimal expansion of the Pythagorean comma.

Original entry on oeis.org

1, 0, 1, 3, 6, 4, 3, 2, 6, 4, 7, 7, 0, 5, 0, 7, 8, 1, 2, 5
Offset: 1

Views

Author

Jonathan Sondow, Jan 19 2013

Keywords

Comments

In musical tuning, the Pythagorean comma is 12 fifths / 7 octaves = (3/2)^12 / 2^7.

Examples

			3^12 / 2^19 = 531441/524288 = 1.0136432647705078125
		

References

  • Larry Baggett, In the Dark on the Sunny Side: A Memoir of an Out-of-Sight Mathematician, Mathematical Association of America, 2012, p. 78.
  • Dave Benson, Music: A Mathematical Offering. Cambridge: Cambridge University Press (2006): 164.
  • J. H. Conway and R. K. Guy, The Book of Numbers, New York: Springer-Verlag, 1995, p. 257.

Crossrefs

Programs

  • Mathematica
    RealDigits[N[31441/524288, 50]][[1]]

Formula

A229948/A229943 - Omar E. Pol, Oct 25 2013

A028507 Continued fraction expansion for log_2(3).

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 1, 5, 2, 23, 2, 2, 1, 1, 55, 1, 4, 3, 1, 1, 15, 1, 9, 2, 5, 7, 1, 1, 4, 8, 1, 11, 1, 20, 2, 1, 10, 1, 4, 1, 1, 1, 1, 1, 37, 4, 55, 1, 1, 49, 1, 1, 1, 4, 1, 3, 2, 3, 3, 1, 5, 16, 2, 3, 1, 1, 1, 1, 1, 5, 2, 1, 2, 8, 7, 1, 1, 2, 1, 1, 3, 3, 1, 1, 1, 1, 5, 4, 2, 2, 2, 16, 8, 10, 1, 25, 2, 1
Offset: 0

Views

Author

Tony Smith (tsmith(AT)innerx.net)

Keywords

Examples

			log_2(3) = 1.5849625007211561814537389439...
		

Crossrefs

Cf. A005663, A005664, A020857 (decimal expansion).

Programs

  • Maple
    Digits := 200: convert(evalf( log(3)/log(2) ),confrac);
  • Mathematica
    ContinuedFraction[Log[2,3],120] (* Harvey P. Dale, Oct 24 2011 *)

Extensions

More terms from James Sellers, Sep 16 2000
Offset changed by Andrew Howroyd, Aug 07 2024

A042937 Denominators of continued fraction convergents to sqrt(1000).

Original entry on oeis.org

1, 1, 2, 3, 5, 8, 53, 114, 281, 4329, 8939, 22207, 142181, 164388, 306569, 470957, 777526, 1248483, 78183472, 79431955, 157615427, 237047382, 394662809, 631710191, 4184923955, 9001558101, 22188040157, 341822160456, 705832361069, 1753486882594
Offset: 0

Views

Author

Keywords

Examples

			sqrt(1000) = 31.62... = 31 + 1/(1 + 1/(1 + ...)) with convergents 31/1, 32/1, 63/2, 95/3, 158/5, ... - _M. F. Hasler_, Nov 02 2019
		

Crossrefs

Cf. A042936 (numerators), A040968 (continued fraction), A010467 (decimals).
Analog for sqrt(m): A000129 (m=2), A002530 (m=3), A001076 (m=5), A041007 (m=6), A041009 (m=7), A041011 (m=8), A005663 (m=10), A041015 (m=11), A041017 (m=12), ..., A042933 (m=998), A042935 (m=999).

Programs

  • Mathematica
    Denominator[Convergents[Sqrt[1000], 30]] (* Vincenzo Librandi, Feb 01 2014 *)
  • PARI
    A42937=contfracpnqn(c=contfrac(sqrt(1000)),#c-1)[2,] \\ Possibly incorrect last term ignored. NB: a(n) = A42937[n+1]. For more terms use e.g. \p999, or compute any a(n) from this as in A042936. - M. F. Hasler, Nov 01 2019

Extensions

More terms from Vincenzo Librandi, Feb 01 2014

A355512 Sum of numerator and denominator in the convergents of the approximation of log(2)/log(3) by a continued fraction.

Original entry on oeis.org

2, 3, 5, 13, 31, 106, 137, 791, 1719, 40328, 82375, 205078, 287453, 492531, 27376658, 27869189, 138853414, 444429431, 583282845, 1027712276, 15998966985, 17026679261, 169239080334, 355504839929, 1946763279979, 13982847799782, 15929611079761, 29912458879543, 135579446597933
Offset: 1

Views

Author

Hugo Pfoertner, Jul 05 2022

Keywords

Crossrefs

Cf. A355514 for the relation to potential cycle lengths of the 3x+1 problem.

Programs

  • PARI
    a355512(upto) = {my(q=log(2)/log(3), fa=oo); for (denmax=1, upto, my(f=bestappr(q,denmax)); if (fa!=f, print1(numerator(f)+denominator(f),", "); fa=f))};
    \\ needs increased precision for larger terms
    a355512(10^6)
    
  • PARI
    \\ See also A005663 and A005664 for efficient code.

A046102 Denominators of convergents to the comma of Pythagoras.

Original entry on oeis.org

1, 1, 3, 7, 24, 31, 179, 389, 9126, 18641, 46408, 65049, 111457, 6195184, 6306641, 31421748, 100571885, 131993633, 232565518, 3620476403, 3853041921, 38297853692, 80448749305, 440541600217, 3164239950824, 3604781551041
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A005664.

Programs

  • Mathematica
    Denominator[ Table[ ContinuedFraction[ Log[ 2 ]/Log[ 3/2 ], i ]//Normal, {i, 30} ] ]

Formula

a(n) = A005663(n) - A005664(n). - T. D. Noe, Oct 12 2007
Showing 1-6 of 6 results.