cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A028569 a(n) = n*(n + 9).

Original entry on oeis.org

0, 10, 22, 36, 52, 70, 90, 112, 136, 162, 190, 220, 252, 286, 322, 360, 400, 442, 486, 532, 580, 630, 682, 736, 792, 850, 910, 972, 1036, 1102, 1170, 1240, 1312, 1386, 1462, 1540, 1620, 1702, 1786, 1872, 1960, 2050, 2142, 2236, 2332, 2430, 2530, 2632, 2736, 2842
Offset: 0

Views

Author

Keywords

Comments

a(n) is the first Zagreb index of the wheel graph with n + 1 vertices. The first Zagreb index of a simple connected graph is the sum of the squared degrees of its vertices. Alternately, it is the sum of the degree sums d(i) + d(j) over all edges ij of the graph. - Emeric Deutsch, Nov 07 2016
The sequence provides all nonnegative k such that 4*k + 81 is a square. - Bruno Berselli, May 08 2018

Crossrefs

Cf. A056000.

Programs

Formula

a(n) = 2*A056000(n). - Zerinvary Lajos, Feb 12 2007
a(n) = 2*n + a(n - 1) + 8. - Vincenzo Librandi, Aug 05 2010
Sum_{n >= 1} 1/a(n) = 7129/22680 = 0.314329806... - R. J. Mathar, Mar 22 2011
G.f.: 2*x*(5 - 4*x)/(1 - x)^3. - Colin Barker, Jan 10 2012
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Wesley Ivan Hurt, Sep 26 2014
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*log(2)/9 - 1879/22680. - Amiram Eldar, Jan 15 2021
From Amiram Eldar, Feb 12 2024: (Start)
Product_{n>=1} (1 - 1/a(n)) = -128*cos(sqrt(85)*Pi/2)/(19*Pi).
Product_{n>=1} (1 + 1/a(n)) = 51840*cos(sqrt(77)*Pi/2)/(4199*Pi). (End)
E.g.f.: exp(x)*x*(10 + x). - Elmo R. Oliveira, Dec 12 2024