cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A028724 a(n) = (1/2)*floor(n/2)*floor((n-1)/2)*floor((n-2)/2).

Original entry on oeis.org

0, 0, 0, 0, 1, 2, 6, 9, 18, 24, 40, 50, 75, 90, 126, 147, 196, 224, 288, 324, 405, 450, 550, 605, 726, 792, 936, 1014, 1183, 1274, 1470, 1575, 1800, 1920, 2176, 2312, 2601, 2754, 3078, 3249, 3610, 3800, 4200, 4410, 4851, 5082, 5566, 5819, 6348, 6624, 7200
Offset: 0

Views

Author

Keywords

Comments

Number of symmetric Dyck paths of semilength n and having four peaks. E.g., a(5)=2 because we have UU*DU*DU*DU*DD and U*DUU*DU*DDU*D, where U=(1,1), D=(1,-1) and * indicates peaks. - Emeric Deutsch, Jan 12 2004
Starting with "1" = triangle A171608 * the triangular numbers. - Gary W. Adamson, Dec 12 2009
Integer solutions of (x + y)^3 = (x - y)^2. If x = a(2*n + 2) then y = -a(2*n + 1). y and x may be interchanged. - Thomas Scheuerle, Mar 22 2023
2*a(n+3) interleaves the positive integers of A011379 and A045991. - J.S. Seneschal, Mar 31 2025

Examples

			a(7) = 9 since the 9 tuples [x, y, z, w] in {[4, 3, 2, 2] [4, 3, 3, 2] [4, 3, 3, 3] [4, 3, 4, 2] [4, 3, 4, 3] [5, 2, 2, 2] [5, 2, 3, 2] [5, 2, 4, 2] [5, 2, 5, 2]} are all the solutions of 7 = x + y, x >= max(y, z), min(y, z) >= w >= 2.
		

References

  • P. A. MacMahon, Combinatory Analysis, Cambridge Univ. Press, London and New York, Vol. 1, 1915 and Vol. 2, 1916; see vol. 2, p 185, Article 433.

Crossrefs

Programs

  • Magma
    [((-1)^n*(3 -3*n +n^2) -(3 -11*n +9*n^2 -2*n^3))/32: n in [0..60]]; // G. C. Greubel, Apr 08 2022
    
  • Maple
    A028724:=n->(1/2)*floor(n/2)*floor((n-1)/2)*floor((n-2)/2);
    seq(A028724(k), k=0..100); # Wesley Ivan Hurt, Nov 01 2013
  • Mathematica
    Table[(1/2)*Floor[n/2]*Floor[(n-1)/2]*Floor[(n-2)/2], {n,0,100}] (* Wesley Ivan Hurt, Nov 01 2013 *)
    Table[(11n-3-9n^2+2n^3+(-1)^n(3-3n+n^2))/32,{n,0,60}] (* Benedict W. J. Irwin, Sep 27 2016 *)
    CoefficientList[Series[x^4 (1 + x + x^2)/(x - 1)^4/(x + 1)^3, {x, 0, 60}], x] (* Michael De Vlieger, Sep 27 2016 *)
  • PARI
    {a(n) = (n\2) * ((n-1)\2) * (n\2-1) / 2} /* Michael Somos, Jan 27 2008 */
    
  • PARI
    {a(n) = if( n<0, n=-1-n; -1, n-=4; 1) * polcoeff( (1 - x^3) / (1 - x)^2 / (1 - x^2)^3 + x*O(x^n), n)} /* Michael Somos, Jan 27 2008 */
    
  • PARI
    first(n) = Vec(x^4*(1+x+x^2)/(x-1)^4/(x+1)^3 + O(x^(n)), -n) \\ Iain Fox, Nov 18 2017
    
  • SageMath
    [(1/2)*(n//2)*((n-1)//2)*((n-2)//2) for n in (0..60)] # G. C. Greubel, Apr 08 2022

Formula

G.f.: x^4*(1+x+x^2)/((1-x)^4*(1+x)^3). - Ralf Stephan, Jun 22 2003
Number of tuples [x, y, z, w] of integers such that n = x + y, x >= max(y, z), min(y, z) >= w >= 2. - Michael Somos, Jan 27 2008
Euler transform of length 3 sequence [2, 3, -1]. - Michael Somos, Jan 27 2008
a(3-n) = -a(n). - Michael Somos, Jan 27 2008
a(n) = (-3 + 11*n - 9*n^2 + 2*n^3 + (-1)^n*(3 - 3*n + n^2))/32. - Benedict W. J. Irwin, Sep 27 2016
a(n) = Sum_{i=1..floor((n-1)/2)} i * ( floor((n-1)/2) mod (n-i-1) ). - Wesley Ivan Hurt, Nov 17 2017
E.g.f.: (1/32)*( (3 + 2*x + x^2)*exp(-x) - (1-x)*(3 - x + 2*x^2)*exp(x) ). - G. C. Greubel, Apr 08 2022
From Amiram Eldar, Apr 16 2023: (Start)
Sum_{n>=4} 1/a(n) = 2.
Sum_{n>=4} (-1)^n/a(n) = 2*Pi^2/3 - 6. (End)