A028820 Squares with digits in nondecreasing order.
0, 1, 4, 9, 16, 25, 36, 49, 144, 169, 225, 256, 289, 1156, 1225, 1369, 1444, 4489, 6889, 11236, 11449, 13456, 13689, 27889, 33489, 111556, 112225, 113569, 134689, 146689, 344569, 444889, 2666689, 2778889, 11115556, 11122225, 11135569
Offset: 1
Links
- Robert G. Wilson v and Chai Wah Wu, Table of n, a(n) for n = 1..428 (n = 1..106 from Robert G. Wilson v).
- Patrick De Geest, Palindromic Squares in bases 2 to 17
Programs
-
Mathematica
Select[Range[0,4000]^2,Min[Differences[IntegerDigits[#]]]>-1&] (* Harvey P. Dale, Dec 31 2013 *) Select[Range[0,10^4]^2,LessEqual@@IntegerDigits[#]&] (* Ray Chandler, Jan 06 2014 *)
-
PARI
mono(n)=n=eval(Vec(Str(n)));for(i=2,#n,if(n[i]
Charles R Greathouse IV, Aug 22 2011 -
Python
from itertools import combinations_with_replacement from gmpy2 import is_square A028820_list = [0] + [n for n in (int(''.join(i)) for l in range(1,11) for i in combinations_with_replacement('123456789',l)) if is_square(n)] # Chai Wah Wu, Dec 07 2015
Formula
a(n) = A028819(n)^2. - Ray Chandler, Jan 06 2014
Extensions
Definition edited by Zak Seidov, Dec 31 2013
Comments