cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A237424 Numbers of the form (10^a + 10^b + 1)/3.

Original entry on oeis.org

1, 4, 7, 34, 37, 67, 334, 337, 367, 667, 3334, 3337, 3367, 3667, 6667, 33334, 33337, 33367, 33667, 36667, 66667, 333334, 333337, 333367, 333667, 336667, 366667, 666667, 3333334, 3333337, 3333367, 3333667, 3336667
Offset: 1

Views

Author

Ahmad J. Masad, Feb 07 2014

Keywords

Comments

Has the property that the product of any two (not necessarily distinct) terms has digits in nondecreasing order.
Conjecture: This sequence is in a sense the maximally dense sequence with this nondecreasing products property. That is, it appears that every maximal sequence is either (i) A237424, (ii) a finite set of "extra" terms plus A237424 restricted to b=0 (which is A093137), or (iii) a finite set of "extra" terms plus A237424 restricted to a=b (which is A067275). (There might be one more case, not yet identified.) - David Applegate, Feb 12 2014
See A254143 and link for products a(i)*a(j) in natural order. - Reinhard Zumkeller, Jan 28 2015

Crossrefs

Programs

  • Haskell
    a237424 = flip div 3 . (+ 1) . a052216
    -- Reinhard Zumkeller, Jan 28 2015
    
  • Magma
    A052216:=[10^(n-1) + 10^(k-1): k in [1..n], n in [1..100]];
    A237424:= func< n | (A052216[n]+1)/3 >;
    [A237424(n): n in [1..100]]; // G. C. Greubel, Feb 22 2024
    
  • Mathematica
    Union@ Flatten@ Table[(10^a + 10^b + 1)/3, {a, 0, 8}, {b, a, 8}] (* Robert G. Wilson v, Jan 26 2015 *)
    (10^#[[1]]+10^#[[2]]+1)/3&/@Tuples[Range[0,8],2]//Union (* Harvey P. Dale, May 28 2019 *)
  • PARI
    list(lim)=my(v=List(),a,t); while(1, for(b=0,a, t=(10^a+10^b+1)/3; if(t>lim, return(Set(v))); listput(v, t)); a++) \\ Charles R Greathouse IV, May 13 2015
    
  • Python
    from math import isqrt
    def A237424(n): return (10**(a:=(k:=isqrt(m:=n<<1))+(m>k*(k+1))-1)+10**(n-1-(a*(a+1)>>1))+1)//3 # Chai Wah Wu, Apr 08 2025
  • SageMath
    A052216=flatten([[10^(n-1) + 10^(k-1) for k in range(1,n+1)] for n in range(1,101)])
    def A237424(n): return (A052216[n-1]+1)//3
    [A237424(n) for n in range(1,101)] # G. C. Greubel, Feb 22 2024
    

Formula

a(n) = (A052216(n) + 1)/3. - Reinhard Zumkeller, Jan 28 2015

Extensions

Edited by David Applegate, Feb 07 2014

A028822 Squares with digits in nonincreasing order.

Original entry on oeis.org

0, 1, 4, 9, 64, 81, 100, 400, 441, 841, 900, 961, 6400, 7744, 8100, 10000, 40000, 44100, 84100, 90000, 96100, 640000, 774400, 810000, 1000000, 4000000, 4410000, 8410000, 8874441, 9000000, 9610000, 9853321, 64000000, 77440000
Offset: 1

Views

Author

Keywords

Comments

From Robert G. Wilson v, Jan 02 2014: (Start)
If x is present so is 100x. The primitives are 0, 1, 4, 9, 64, 81, 441, 841, 961, 7744, 8874441, 9853321, 999887641, …, . = A062826. Their square roots are: 0, 1, 2, 3, 8, 9, 21, 29, 31, 88, 2979, 3139, 31621, …, . Are there no more primitives?
Number of terms less than 10^k, beginning with k=0: 1, 4, 6, 12, 15, 21, 24, 32, 35, 44, 47, 56, 59, 68, 71, 80, 83, 92, 95, …, .
Like all squares the ending digits can be 0, 1, 4, 5, 6 or 9. Here is the tally of the list of terms < 10^18: {0, 84}, {1, 8}, {4, 3}, {5, 0}, {6, 0}, {9, 1}. (End)

Crossrefs

Programs

  • Mathematica
    fQ[n_] := Max[ Differences[ IntegerDigits[ n]]] < 1; Select[ Range[0, 9000]^2, fQ] (* Robert G. Wilson v, Jan 02 2014 *)
    Select[Range[0,10^4]^2,GreaterEqual@@IntegerDigits[#]&] (* Ray Chandler, Jan 05 2014 *)
  • PARI
    isA009996(n)=n=digits(n); for(i=2,#n,if(n[i]>n[i-1],return(0))); 1
    is(n)=issquare(n) && isA009996(n) \\ Charles R Greathouse IV, Jan 02 2014

Formula

For n > 1, a(n) = A062826(i) * 10^j for some i and j. - Charles R Greathouse IV, Jan 02 2014
a(n) = A028821(n)^2. - Ray Chandler, Jan 05 2014

Extensions

Better name from Robert G. Wilson v, Jan 02 2014

A028819 Numbers whose square has its digits in nondecreasing order.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 12, 13, 15, 16, 17, 34, 35, 37, 38, 67, 83, 106, 107, 116, 117, 167, 183, 334, 335, 337, 367, 383, 587, 667, 1633, 1667, 3334, 3335, 3337, 3367, 3383, 3667, 4833, 6667, 16667, 33334, 33335, 33337, 33367, 33667, 36667, 66667
Offset: 1

Views

Author

Keywords

Comments

It appears that from a(53) onwards all terms have nondecreasing digits and has one of the following forms: 16..67, 3..34, 3..35, 3..37, 3..367, 3..36..67, 36..67 and 6..67 and all number of such forms are terms. - Chai Wah Wu, Dec 07 2015

Crossrefs

Programs

  • Mathematica
    okQ[n_]:=And@@(#[[2]]>=#[[1]]&/@Partition[IntegerDigits[n^2],2,1])
    Select[Range[0,50000],okQ]  (* Harvey P. Dale, Jan 09 2011 *)
    Select[Range[0,10^5],LessEqual@@IntegerDigits[#^2]&] (* Ray Chandler, Jan 06 2014 *)
  • PARI
    mono(n)=n=eval(Vec(Str(n)));for(i=2,#n,if(n[i]Charles R Greathouse IV, Aug 22 2011
    
  • Python
    from itertools import combinations_with_replacement
    from gmpy2 import is_square, isqrt
    A028819_list = [0] + [int(isqrt(n)) for n in (int(''.join(i)) for l in range(1,11) for i in combinations_with_replacement('123456789',l)) if is_square(n)] # Chai Wah Wu, Dec 07 2015

A234848 Triangular numbers with digits in nondecreasing order.

Original entry on oeis.org

0, 1, 3, 6, 15, 28, 36, 45, 55, 66, 78, 136, 378, 666, 1128, 1225, 1378, 2278, 2346, 2556, 5778, 12246, 13366, 22366, 22578, 35778, 111156, 222778, 223446, 333336, 1113778, 1222266, 1457778, 2235555, 3557778, 22227778, 22234446, 111116778, 156777778, 222446778
Offset: 1

Views

Author

Zak Seidov, Dec 31 2013

Keywords

Comments

Beyond 222446778, all terms are k(k+1)/2 for k = 2s7, 6s7, or 6s8, where s stands for any number of 6's. - T. D. Noe, Jan 01 2014

Crossrefs

Programs

  • Mathematica
    inOrder[nums_] := Min[Differences[nums]] >= 0; t = {}; Do[tri = n*(n+1)/2; If[inOrder[IntegerDigits[tri]], AppendTo[t, tri]], {n, 0, 10^5}]; t (* T. D. Noe, Dec 31 2013 *)
    Select[Accumulate[Range[0,22000]],Min[Differences[IntegerDigits[#]]]>=0&] (* Harvey P. Dale, Apr 06 2023 *)
  • Python
    from itertools import chain, count, islice, combinations_with_replacement
    from sympy import integer_nthroot
    def A234848_gen(): # generator of terms
        return chain((0,), (n for n in (int(''.join(i)) for l in count(1) for i in combinations_with_replacement('123456789',l)) if integer_nthroot(8*n+1,2)[1]))
    A234848_list = list(islice(A234848_gen(),50)) # Chai Wah Wu, May 22 2022

A352721 Perfect cubes whose decimal digits appear in nonincreasing order.

Original entry on oeis.org

0, 1, 8, 64, 1000, 8000, 64000, 1000000, 8000000, 64000000, 1000000000, 8000000000, 64000000000, 1000000000000, 8000000000000, 64000000000000, 1000000000000000, 8000000000000000, 64000000000000000, 1000000000000000000, 8000000000000000000, 64000000000000000000
Offset: 1

Views

Author

Antonio Roldán, Mar 30 2022

Keywords

Examples

			64 is in the sequence because it is a perfect cube (64 = 4^3) whose digits appear in nonincreasing order.
		

Crossrefs

Intersection of A000578 and A009996.

Programs

  • Mathematica
    Select[Range[0, 4*10^6]^3, Max@ Differences[IntegerDigits[#]] <= 0 &] (* Amiram Eldar, Mar 30 2022 *)
  • PARI
    ok(n) = digits(n) == vecsort(digits(n),,4) && ispower(n,3)

Formula

a(n) = A004647(n-1)^3.
Showing 1-5 of 5 results.